Sierpiński graphs as spanning subgraphs of Hanoi graphs
Andreas Hinz; Sandi Klavžar; Sara Zemljič
Open Mathematics (2013)
- Volume: 11, Issue: 6, page 1153-1157
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAndreas Hinz, Sandi Klavžar, and Sara Zemljič. "Sierpiński graphs as spanning subgraphs of Hanoi graphs." Open Mathematics 11.6 (2013): 1153-1157. <http://eudml.org/doc/269481>.
@article{AndreasHinz2013,
abstract = {Hanoi graphs H pn model the Tower of Hanoi game with p pegs and n discs. Sierpinski graphs S pn arose in investigations of universal topological spaces and have meanwhile been studied extensively. It is proved that S pn embeds as a spanning subgraph into H pn if and only if p is odd or, trivially, if n = 1.},
author = {Andreas Hinz, Sandi Klavžar, Sara Zemljič},
journal = {Open Mathematics},
keywords = {Sierpiński graph; Hanoi graph; Spanning subgraph; Hamming graph; spanning subgraph},
language = {eng},
number = {6},
pages = {1153-1157},
title = {Sierpiński graphs as spanning subgraphs of Hanoi graphs},
url = {http://eudml.org/doc/269481},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Andreas Hinz
AU - Sandi Klavžar
AU - Sara Zemljič
TI - Sierpiński graphs as spanning subgraphs of Hanoi graphs
JO - Open Mathematics
PY - 2013
VL - 11
IS - 6
SP - 1153
EP - 1157
AB - Hanoi graphs H pn model the Tower of Hanoi game with p pegs and n discs. Sierpinski graphs S pn arose in investigations of universal topological spaces and have meanwhile been studied extensively. It is proved that S pn embeds as a spanning subgraph into H pn if and only if p is odd or, trivially, if n = 1.
LA - eng
KW - Sierpiński graph; Hanoi graph; Spanning subgraph; Hamming graph; spanning subgraph
UR - http://eudml.org/doc/269481
ER -
References
top- [1] Arett D., Dorée S., Coloring and counting on the Tower of Hanoi graphs, Math. Mag., 2010, 83, 200–209 http://dx.doi.org/10.4169/002557010X494841[Crossref] Zbl1227.05140
- [2] Beaudou L., Gravier S., Klavžar S., Kovše M., Mollard M., Covering codes in Sierpinski graphs, Discrete Math. Theor. Comput. Sci., 2010, 12(3), 63–74 Zbl1280.05130
- [3] Chen X., Shen J., On the Frame-Stewart conjecture about the Towers of Hanoi, SIAM J. Comput., 2004, 33(3), 584–589 http://dx.doi.org/10.1137/S0097539703431019[Crossref] Zbl1055.05002
- [4] Fu H.-Y., Xie D., Equitable L(2, 1)-labelings of Sierpinski graphs, Australas. J. Combin., 2010, 46, 147–156 Zbl1196.05083
- [5] Hinz A.M., The Tower of Hanoi, Enseign. Math., 1989, 35(3–4), 289–321 Zbl0746.05035
- [6] Hinz A.M., Parisse D., On the planarity of Hanoi graphs, Expo. Math., 2002, 20(3), 263–268 http://dx.doi.org/10.1016/S0723-0869(02)80023-8[Crossref] Zbl1008.05045
- [7] Hinz A.M., Parisse D., Coloring Hanoi and Sierpinski graphs, Discrete Math., 2012, 312(9), 1521–1535 http://dx.doi.org/10.1016/j.disc.2011.08.019[Crossref] Zbl1239.05066
- [8] Hinz A.M., Parisse D., The average eccentricity of Sierpinski graphs, Graphs Combin., 2012, 28(5), 671–686 http://dx.doi.org/10.1007/s00373-011-1076-4[Crossref] Zbl1256.05058
- [9] Imrich W., Klavžar S., Rall D.F., Topics in Graph Theory, AK Peters, Wellesley, 2008 Zbl1156.05001
- [10] Klavžar S., Milutinovic U., Graphs S(n, k) and a variant of the Tower of Hanoi problem, Czechoslovak Math. J., 1997, 47(122)(1), 95–104 http://dx.doi.org/10.1023/A:1022444205860[Crossref] Zbl0898.05042
- [11] Klavžar S., Milutinovic U., Petr C., On the Frame-Stewart algorithm for the multi-peg Tower of Hanoi problem, Discrete Appl. Math., 2002, 120(1–3), 141–157 http://dx.doi.org/10.1016/S0166-218X(01)00287-6[Crossref] Zbl1019.90047
- [12] Lin C.-H., Liu J.-J., Wang Y.-L., Yen W.C.-K., The hub number of Sierpinski-like graphs, Theory Comput. Syst., 2011, 49(3), 588–600 http://dx.doi.org/10.1007/s00224-010-9286-3[WoS][Crossref] Zbl1234.05178
- [13] Lipscomb S.L., Fractals and Universal Spaces in Dimension Theory, Springer Monogr. Math., Springer, New York, 2009 http://dx.doi.org/10.1007/978-0-387-85494-6[Crossref] Zbl1210.28002
- [14] Milutinovic U., Completeness of the Lipscomb universal space, Glas. Mat., 1992, 27(47)(2), 343–364 Zbl0797.54045
- [15] Parisse D., On some metric properties of the Sierpinski graphs S k n , Ars Combin., 2009, 90, 145–160 Zbl1224.05153
- [16] Park S.E., The group of symmetries of the Tower of Hanoi graph, Amer. Math. Monthly, 2010, 117(4), 353–360 http://dx.doi.org/10.4169/000298910X480829[Crossref] Zbl1200.05026
- [17] Romik D., Shortest paths in the Tower of Hanoi graph and finite automata, SIAM J. Discrete Math., 2006, 20(3), 610–622 http://dx.doi.org/10.1137/050628660[Crossref] Zbl1127.68069
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.