Approximations of the partial derivatives by averaging
Open Mathematics (2012)
- Volume: 10, Issue: 1, page 44-54
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Ainsworth M., Oden J.T., A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 2000 http://dx.doi.org/10.1002/9781118032824 Zbl1008.65076
- [2] Ciarlet P.G., The Finite Element Method for Elliptic Problems, Stud. Math. Appl., 4, North Holland, Amsterdam-New York-Oxford, 1978 http://dx.doi.org/10.1016/S0168-2024(08)70178-4
- [3] Dalík J., Averaging of directional derivatives in vertices of nonobtuse regular triangulations, Numer. Math., 2010, 116(4), 619–644 http://dx.doi.org/10.1007/s00211-010-0316-5 Zbl1215.65044
- [4] Hlaváček I., Křížek M., Pištora V., How to recover the gradient of linear elements on nonuniform triangulations, Appl. Math., 1996, 41(4), 241–267 Zbl0870.65093
- [5] Křížek M., Neittaanmäki P., Superconvergence phenomenon in the finite element method arising from averaging gradients, Numer. Math., 1984, 45(1), 105–116 http://dx.doi.org/10.1007/BF01379664 Zbl0575.65104
- [6] Li S., Concise formulas for the area and volume of a hyperspherical cap, Asian J. Math. Stat., 2011, 4(1), 66–70 http://dx.doi.org/10.3923/ajms.2011.66.70
- [7] Naga A., Zhang Z., The polynomial-preserving recovery for higher order finite element methods in 2D and 3D, Discrete Contin. Dyn. Syst. Ser. B, 2005, 5(3), 769–798 http://dx.doi.org/10.3934/dcdsb.2005.5.769 Zbl1078.65108
- [8] Quarteroni A., Valli A., Numerical Approximation of Partial Differential Equations, Springer Ser. Comput. Math., 23, Springer, Berlin, 1994 Zbl0803.65088
- [9] Zhang Z., Naga A., A new finite element gradient recovery method: superconvergence property, SIAM J. Sci. Comput. 2005, 26(4), 1192–1213 http://dx.doi.org/10.1137/S1064827503402837 Zbl1078.65110
- [10] Zienkiewicz O.C., Cheung Y.K., The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, London, 1967 Zbl0189.24902
- [11] Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates. Part I: The recovery technique, Internat. J. Numer. Methods Engrg., 1992, 33(7), 1331–1364 http://dx.doi.org/10.1002/nme.1620330702 Zbl0769.73084