How to recover the gradient of linear elements on nonuniform triangulations
Ivan Hlaváček; Michal Křížek; Vladislav Pištora
Applications of Mathematics (1996)
- Volume: 41, Issue: 4, page 241-267
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHlaváček, Ivan, Křížek, Michal, and Pištora, Vladislav. "How to recover the gradient of linear elements on nonuniform triangulations." Applications of Mathematics 41.4 (1996): 241-267. <http://eudml.org/doc/32949>.
@article{Hlaváček1996,
abstract = {We propose and examine a simple averaging formula for the gradient of linear finite elements in $R^d$ whose interpolation order in the $L^q$-norm is $\mathcal \{O\}(h^2)$ for $d<2q$ and nonuniform triangulations. For elliptic problems in $R^2$ we derive an interior superconvergence for the averaged gradient over quasiuniform triangulations. A numerical example is presented.},
author = {Hlaváček, Ivan, Křížek, Michal, Pištora, Vladislav},
journal = {Applications of Mathematics},
keywords = {weighted averaged gradient; linear elements; nonuniform triangulations; superapproximation; superconvergence; weighted averaged gradient; linear elements; nonuniform triangulations; superapproximation; superconvegence},
language = {eng},
number = {4},
pages = {241-267},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {How to recover the gradient of linear elements on nonuniform triangulations},
url = {http://eudml.org/doc/32949},
volume = {41},
year = {1996},
}
TY - JOUR
AU - Hlaváček, Ivan
AU - Křížek, Michal
AU - Pištora, Vladislav
TI - How to recover the gradient of linear elements on nonuniform triangulations
JO - Applications of Mathematics
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 41
IS - 4
SP - 241
EP - 267
AB - We propose and examine a simple averaging formula for the gradient of linear finite elements in $R^d$ whose interpolation order in the $L^q$-norm is $\mathcal {O}(h^2)$ for $d<2q$ and nonuniform triangulations. For elliptic problems in $R^2$ we derive an interior superconvergence for the averaged gradient over quasiuniform triangulations. A numerical example is presented.
LA - eng
KW - weighted averaged gradient; linear elements; nonuniform triangulations; superapproximation; superconvergence; weighted averaged gradient; linear elements; nonuniform triangulations; superapproximation; superconvegence
UR - http://eudml.org/doc/32949
ER -
References
top- 10.1007/BF01385730, Numer. Math. 60 (1992), 429–463. (1992) MR1142306DOI10.1007/BF01385730
- 10.1002/nme.1620200611, Internat. J. Numer. Methods Engrg. 20 (1984), 1085–1109, 1111–1129. (1984) DOI10.1002/nme.1620200611
- Taschenbuch mathematischer Formeln, VEB Fachbuchverlag, Leipzig, 1979. (1979) MR1246330
- 10.1007/BF01447854, Appl. Math. Optim. 2 (1975), 130–169. (1975) MR0443372DOI10.1007/BF01447854
- 10.1137/0707006, SIAM J. Numer. Anal. 7 (1970), 112–124. (1970) MR0263214DOI10.1137/0707006
- Estimates for spline projections, RAIRO Anal. Numér. 10 (1976), 5–37. (1976) MR0436620
- Basic error estimates for elliptic problems, Handbook of Numerical Analysis II (P. G. Ciarlet, J. L. Lions eds.), North-Holland, Amsterdam, 1991. (1991) MR1115237
- 10.1007/BF01385773, Numer. Math. 59 (1991), 107–127. (1991) MR1106377DOI10.1007/BF01385773
- 10.1002/num.1690060105, Numer. Methods Partial Differential Equations 6 (1990), 59–74. (1990) MR1034433DOI10.1002/num.1690060105
- 10.1002/num.1690070106, Numer. Methods Partial Differential Equations 7 (1991), 61–83. (1991) MR1088856DOI10.1002/num.1690070106
- Design sensitivity analysis of structural systems, Academic Press, London, 1986. (1986) MR0860040
- On a superconvergent finite element scheme for elliptic systems, Parts I–III, Apl. Mat. 32 (1987), 131–154, 200–213, 276–289. (1987)
- Optimal interior and local error estimates of a recovered gradient of linear elements on nonuniform triangulations, J. Comput. Math (to appear). (to appear) MR1414854
- Superconvergence of the gradient for linear finite elements for nonlinear elliptic problems, Proc. of the ISNA Conf., Prague, 1987, Teubner, Leipzig, 1988, 199–204. Zbl0677.65107MR1171706
- Superconvergence of the gradient of linear elements for 3D Poisson equation, Proc. Internat. Conf. Optimal Algorithms (ed. B. Sendov), Blagoevgrad, 1986, Izd. Bulg. Akad. Nauk, Sofia, 1986, 172–182.
- An equilibrium finite element method in three-dimensional elasticity, Apl. Mat. 27 (1982), 46–75. (1982) MR0640139
- 10.1007/BF01379664, Numer. Math. 45 (1984), 105–116. (1984) MR0761883DOI10.1007/BF01379664
- 10.1016/0377-0427(87)90018-5, J. Comput. Appl. Math. 18 (1987), 221–233. (1987) MR0896426DOI10.1016/0377-0427(87)90018-5
- 10.1007/BF00047538, Acta Appl. Math. 9 (1987), 175–198. (1987) MR0900263DOI10.1007/BF00047538
- 10.1093/imanum/5.4.407, IMA J. Numer. Anal. 5 (1985), 407–427. (1985) Zbl0584.65067MR0816065DOI10.1093/imanum/5.4.407
- A rectangle test for singular solution with irregular meshes, Proc. of Systems Sci. & Systems Engrg., Great Wall (H.K.) Culture Publ. Co., 1991, 236–237.
- Asymptotic expansion for the derivative of finite elements, J. Comput. Math. 2 (1984), 361–363. (1984) MR0869509
- 10.1007/BF01396494, Numer. Math. 33 (1979), 43–53. (1979) Zbl0435.65090MR0545741DOI10.1007/BF01396494
- An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with a smooth boundary (Russian), Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. (1969) MR0295599
- 10.1137/0726033, SIAM J. Numer. Anal. 26 (1989), 553–573. (1989) MR0997656DOI10.1137/0726033
- Local behavior in finite element methods, Handbook of Numerical Analysis II (P. G. Ciarlet, J. L. Lions eds.), North-Holland, Amsterdam, 1991, 353–522. (1991, 353–522) MR1115238
- Superconvergence in Galerkin finite element methods (Lecture notes), Cornell Univ., 1994, 1–243. MR1439050
- 10.1002/num.1690030106, Numer. Methods Partial Differential Equations 3 (1987), 65–82. (1987) MR1012906DOI10.1002/num.1690030106
- Superkonvergenz des Gradienten im Postprocessing von FiniteElemente-Methoden, Preprint Nr. 94, Tech. Univ. Chemnitz, 1989, 1–15.
- 10.1002/nme.1620330702, Part 1, Internat. J. Numer. Methods Engrg. 33 (1992), 1331–1364. (1992) MR1161557DOI10.1002/nme.1620330702
Citations in EuDML Documents
top- Josef Dalík, Approximations of the partial derivatives by averaging
- Josef Dalík, Václav Valenta, Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements
- Josef Dalík, Operators approximating partial derivatives at vertices of triangulations by averaging
- Ivan Hlaváček, Jan Chleboun, A recovered gradient method applied to smooth optimal shape problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.