Determinant evaluations for binary circulant matrices
Special Matrices (2014)
- Volume: 2, Issue: 1, page 187-199, electronic only
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topChristos Kravvaritis. "Determinant evaluations for binary circulant matrices." Special Matrices 2.1 (2014): 187-199, electronic only. <http://eudml.org/doc/269493>.
@article{ChristosKravvaritis2014,
abstract = {Determinant formulas for special binary circulant matrices are derived and a new open problem regarding the possible determinant values of these specific circulant matrices is stated. The ideas used for the proofs can be utilized to obtain more determinant formulas for other binary circulant matrices, too. The superiority of the proposed approach over the standard method for calculating the determinant of a general circulant matrix is demonstrated.},
author = {Christos Kravvaritis},
journal = {Special Matrices},
keywords = {Determinant; binary circulant matrices; determinant},
language = {eng},
number = {1},
pages = {187-199, electronic only},
title = {Determinant evaluations for binary circulant matrices},
url = {http://eudml.org/doc/269493},
volume = {2},
year = {2014},
}
TY - JOUR
AU - Christos Kravvaritis
TI - Determinant evaluations for binary circulant matrices
JO - Special Matrices
PY - 2014
VL - 2
IS - 1
SP - 187
EP - 199, electronic only
AB - Determinant formulas for special binary circulant matrices are derived and a new open problem regarding the possible determinant values of these specific circulant matrices is stated. The ideas used for the proofs can be utilized to obtain more determinant formulas for other binary circulant matrices, too. The superiority of the proposed approach over the standard method for calculating the determinant of a general circulant matrix is demonstrated.
LA - eng
KW - Determinant; binary circulant matrices; determinant
UR - http://eudml.org/doc/269493
ER -
References
top- [1] J. Bae. Circulant Matrix Factorization Based on Schur Algorithm for Designing Optical Multimirror Filters. Japan. J. Math. 45:5163–5168, 2006.
- [2] R. A. Brualdi and H. Schneider. Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir and Cayley. Linear Algebra Appl. 52:769–791, 1983. [WoS] Zbl0533.15007
- [3] B. Fischer and J. Modersitzki. Fast inversion of matrices arising in image processing. Numer. Algorithms 22:1–11, 1999. [Crossref] Zbl0957.65019
- [4] S. Georgiou and C. Kravvaritis. New Good Quasi-Cyclic Codes over GF(3). Int. J. Algebra 1:11–24, 2007. Zbl1206.94106
- [5] R. M. Gray. Toeplitz and Circulant Matrices: A review. Found. Trends Comm. Inform. Theory 2:155–239, 2006.
- [6] F. A. Graybill. Matrices with applications in statistics. Prentice Hall, Wadsworth-Belmont, 1983. Zbl0496.15002
- [7] K. Grifln and M. J. Tsatsomeros. Principal minors, Part I: A method for computing all the principal minors of amatrix. Linear Algebra Appl. 419:107–124, 2006. Zbl1110.65034
- [8] K. J. Horadam. Hadamard matrices and their applications. Princeton University Press, Princeton and Oxford, 2007. Zbl1145.05014
- [9] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985. Zbl0576.15001
- [10] T. K. Huckle. Compact Fourier Analysis for Designing Multigrid Methods. SIAM J. Comput. 31:644–666, 2008. [WoS] Zbl1186.65037
- [11] T. K. Huckle and C. Kravvaritis, Compact Fourier Analysis for Multigrid Methods based on Block Symbols, SIAM J. Matrix Anal. Appl., 33:73–96, 2012. [WoS] Zbl1250.65151
- [12] C. Koukouvinos, M. Mitrouli and J. Seberry.Growth in Gaussian elimination for weighingmatrices,W(n, n−1). Linear Algebra Appl. 306:189–202, 2000. Zbl0947.65031
- [13] C. Koukouvinos, M. Mitrouli and J. Seberry. An algorithm to find formulae and values of minors for Hadamard matrices. Linear Algebra Appl., 330:129–147, 2001. Zbl0981.65056
- [14] S. Kounias, C. Koukouvinos, N. Nikolaou and A. Kakos. The nonequivalent circulant D-optimal designs for n ≡ 2mod 4, n = 54, n = 66. J. Combin. Theory Ser. A 65:26–38, 1994. Zbl0788.62067
- [15] C. Krattenthaler. Advanced determinant calculus. Sém. Lothar. Combin. 42:69–157, 1999. Zbl0923.05007
- [16] C. Krattenthaler. Advanced determinant calculus: A complement. Linear Algebra Appl., 411:68–166, 2005. Zbl1079.05008
- [17] G. Maze and H. Parlier. Determinants of Binary Circulant matrices. IEEE Trans. Inform. Theory p. 124, 2004.
- [18] A. R. Moghaddamfar, S. M. H. Pooya, S. Navid Salehy and S. Nima Salehy. More calculations on determinant evaluations. Electron. J. Linear Algebra 16:19–29, 2007. Zbl1146.15004
- [19] N. Nguyen, P. Milanfar and G. Golub. A Computationally Eflcient Superresolution Image Reconstruction Algorithm. IEEE Trans. Image Process. 10:573–583, 2001. [Crossref][PubMed] Zbl1040.68567
- [20] J. Seberry, T. Xia, C. Koukouvinos and M. Mitrouli. The maximal determinant and subdeterminants of ±1 matrices. Linear Algebra Appl. 373:297–310, 2003. [WoS] Zbl1048.15008
- [21] F. R. Sharpe. The maximum value of a determinant. Bull. Amer. Math. Soc. 14:121–123, 1907. [Crossref] Zbl38.0200.03
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.