Stanley depth of monomial ideals with small number of generators
Open Mathematics (2009)
- Volume: 7, Issue: 4, page 629-634
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMircea Cimpoeaş. "Stanley depth of monomial ideals with small number of generators." Open Mathematics 7.4 (2009): 629-634. <http://eudml.org/doc/269496>.
@article{MirceaCimpoeaş2009,
abstract = {For a monomial ideal I ⊂ S = K[x 1...,x n], we show that sdepth(S/I) ≥ n − g(I), where g(I) is the number of the minimal monomial generators of I. If I =νI′, where ν ∈ S is a monomial, then we see that sdepth(S/I) = sdepth(S/I′). We prove that if I is a monomial ideal I ⊂ S minimally generated by three monomials, then I and S/I satisfy the Stanley conjecture. Given a saturated monomial ideal I ⊂ K[x 1,x 2,x 3] we show that sdepth(I) = 2. As a consequence, sdepth(I) ≥ sdepth(K[x 1,x 2,x 3]//I) +1 for any monomial ideal in I ⊂ K[x 1,x 2,x 3].},
author = {Mircea Cimpoeaş},
journal = {Open Mathematics},
keywords = {Stanley depth; Monomial ideal; monomial ideal},
language = {eng},
number = {4},
pages = {629-634},
title = {Stanley depth of monomial ideals with small number of generators},
url = {http://eudml.org/doc/269496},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Mircea Cimpoeaş
TI - Stanley depth of monomial ideals with small number of generators
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 629
EP - 634
AB - For a monomial ideal I ⊂ S = K[x 1...,x n], we show that sdepth(S/I) ≥ n − g(I), where g(I) is the number of the minimal monomial generators of I. If I =νI′, where ν ∈ S is a monomial, then we see that sdepth(S/I) = sdepth(S/I′). We prove that if I is a monomial ideal I ⊂ S minimally generated by three monomials, then I and S/I satisfy the Stanley conjecture. Given a saturated monomial ideal I ⊂ K[x 1,x 2,x 3] we show that sdepth(I) = 2. As a consequence, sdepth(I) ≥ sdepth(K[x 1,x 2,x 3]//I) +1 for any monomial ideal in I ⊂ K[x 1,x 2,x 3].
LA - eng
KW - Stanley depth; Monomial ideal; monomial ideal
UR - http://eudml.org/doc/269496
ER -
References
top- [1] Ahmad S., Popescu D., Sequentially Cohen-Macaulay monomial ideals of embedding dimension four, Bull. Math. Soc. Sci. Math. Roumanie, 2007, 50(98), 99–110 Zbl1150.13004
- [2] Anwar I., Janet’s algorithm, Bull. Math. Soc. Sci. Math. Roumanie, 2008, 51(99), 11–19
- [3] Anwar I., Popescu D., Stanley Conjecture in small embedding dimension, J. Algebra, 2007, 318, 1027–1031 http://dx.doi.org/10.1016/j.jalgebra.2007.06.005[Crossref][WoS] Zbl1132.13009
- [4] Apel J., On a conjecture of R.P.Stanley, J. Algebraic Combin., 2003, 17, 36–59
- [5] Cimpoeas M., Stanley depth for monomial complete intersection, Bull. Math. Soc. Sci. Math. Roumanie, 2008, 51(99), 205–211 Zbl1174.13033
- [6] Cimpoeas M., Some remarks on the Stanley depth for multigraded modules, Le Mathematiche, 2008, LXIII, 165–171 Zbl1184.13067
- [7] Herzog J., Jahan A.S., Yassemi S., Stanley decompositions and partitionable simplicial complexes, J. Algebraic Combin., 2008, 27, 113–125 http://dx.doi.org/10.1007/s10801-007-0076-1[Crossref] Zbl1131.13020
- [8] Herzog J., Vladoiu M., Zheng X., How to compute the Stanley depth of a monomial ideal, J. Algebra, doi:10:1016/j.jalgebra.2008.01.006, to appear [WoS] Zbl1186.13019
- [9] Jahan A.S., Prime filtrations of monomial ideals and polarizations, J. Algebra, 2007, 312, 1011–1032 http://dx.doi.org/10.1016/j.jalgebra.2006.11.002[Crossref] Zbl1142.13022
- [10] Nasir S., Stanley decompositions and localization, Bull. Math. Soc. Sci. Math. Roumanie, 2008, 51(99), 151–158
- [11] Popescu D., Stanley depth of multigraded modules, J. Algebra, 2009, 321(10), 2782–2797 http://dx.doi.org/10.1016/j.jalgebra.2009.03.009[Crossref][WoS] Zbl1179.13016
- [12] Rauf A., Stanley decompositions, pretty clean filtrations and reductions modulo regular elements, Bull. Soc. Sci. Math. Roumanie, 2007, 50(98), 347–354 Zbl1155.13311
- [13] Rauf A., Depth and Stanley depth of multigraded modules, Comm. Algebra, to appear
- [14] Shen Y., Stanley depth of complete intersection monomial ideals and upper-discrete partitions, J. Algebra, 2009, 321, 1285–1292 http://dx.doi.org/10.1016/j.jalgebra.2008.11.010[WoS][Crossref] Zbl1167.13010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.