Stanley depth of monomial ideals with small number of generators

Mircea Cimpoeaş

Open Mathematics (2009)

  • Volume: 7, Issue: 4, page 629-634
  • ISSN: 2391-5455

Abstract

top
For a monomial ideal I ⊂ S = K[x 1...,x n], we show that sdepth(S/I) ≥ n − g(I), where g(I) is the number of the minimal monomial generators of I. If I =νI′, where ν ∈ S is a monomial, then we see that sdepth(S/I) = sdepth(S/I′). We prove that if I is a monomial ideal I ⊂ S minimally generated by three monomials, then I and S/I satisfy the Stanley conjecture. Given a saturated monomial ideal I ⊂ K[x 1,x 2,x 3] we show that sdepth(I) = 2. As a consequence, sdepth(I) ≥ sdepth(K[x 1,x 2,x 3]//I) +1 for any monomial ideal in I ⊂ K[x 1,x 2,x 3].

How to cite

top

Mircea Cimpoeaş. "Stanley depth of monomial ideals with small number of generators." Open Mathematics 7.4 (2009): 629-634. <http://eudml.org/doc/269496>.

@article{MirceaCimpoeaş2009,
abstract = {For a monomial ideal I ⊂ S = K[x 1...,x n], we show that sdepth(S/I) ≥ n − g(I), where g(I) is the number of the minimal monomial generators of I. If I =νI′, where ν ∈ S is a monomial, then we see that sdepth(S/I) = sdepth(S/I′). We prove that if I is a monomial ideal I ⊂ S minimally generated by three monomials, then I and S/I satisfy the Stanley conjecture. Given a saturated monomial ideal I ⊂ K[x 1,x 2,x 3] we show that sdepth(I) = 2. As a consequence, sdepth(I) ≥ sdepth(K[x 1,x 2,x 3]//I) +1 for any monomial ideal in I ⊂ K[x 1,x 2,x 3].},
author = {Mircea Cimpoeaş},
journal = {Open Mathematics},
keywords = {Stanley depth; Monomial ideal; monomial ideal},
language = {eng},
number = {4},
pages = {629-634},
title = {Stanley depth of monomial ideals with small number of generators},
url = {http://eudml.org/doc/269496},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Mircea Cimpoeaş
TI - Stanley depth of monomial ideals with small number of generators
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 629
EP - 634
AB - For a monomial ideal I ⊂ S = K[x 1...,x n], we show that sdepth(S/I) ≥ n − g(I), where g(I) is the number of the minimal monomial generators of I. If I =νI′, where ν ∈ S is a monomial, then we see that sdepth(S/I) = sdepth(S/I′). We prove that if I is a monomial ideal I ⊂ S minimally generated by three monomials, then I and S/I satisfy the Stanley conjecture. Given a saturated monomial ideal I ⊂ K[x 1,x 2,x 3] we show that sdepth(I) = 2. As a consequence, sdepth(I) ≥ sdepth(K[x 1,x 2,x 3]//I) +1 for any monomial ideal in I ⊂ K[x 1,x 2,x 3].
LA - eng
KW - Stanley depth; Monomial ideal; monomial ideal
UR - http://eudml.org/doc/269496
ER -

References

top
  1. [1] Ahmad S., Popescu D., Sequentially Cohen-Macaulay monomial ideals of embedding dimension four, Bull. Math. Soc. Sci. Math. Roumanie, 2007, 50(98), 99–110 Zbl1150.13004
  2. [2] Anwar I., Janet’s algorithm, Bull. Math. Soc. Sci. Math. Roumanie, 2008, 51(99), 11–19 
  3. [3] Anwar I., Popescu D., Stanley Conjecture in small embedding dimension, J. Algebra, 2007, 318, 1027–1031 http://dx.doi.org/10.1016/j.jalgebra.2007.06.005[Crossref][WoS] Zbl1132.13009
  4. [4] Apel J., On a conjecture of R.P.Stanley, J. Algebraic Combin., 2003, 17, 36–59 
  5. [5] Cimpoeas M., Stanley depth for monomial complete intersection, Bull. Math. Soc. Sci. Math. Roumanie, 2008, 51(99), 205–211 Zbl1174.13033
  6. [6] Cimpoeas M., Some remarks on the Stanley depth for multigraded modules, Le Mathematiche, 2008, LXIII, 165–171 Zbl1184.13067
  7. [7] Herzog J., Jahan A.S., Yassemi S., Stanley decompositions and partitionable simplicial complexes, J. Algebraic Combin., 2008, 27, 113–125 http://dx.doi.org/10.1007/s10801-007-0076-1[Crossref] Zbl1131.13020
  8. [8] Herzog J., Vladoiu M., Zheng X., How to compute the Stanley depth of a monomial ideal, J. Algebra, doi:10:1016/j.jalgebra.2008.01.006, to appear [WoS] Zbl1186.13019
  9. [9] Jahan A.S., Prime filtrations of monomial ideals and polarizations, J. Algebra, 2007, 312, 1011–1032 http://dx.doi.org/10.1016/j.jalgebra.2006.11.002[Crossref] Zbl1142.13022
  10. [10] Nasir S., Stanley decompositions and localization, Bull. Math. Soc. Sci. Math. Roumanie, 2008, 51(99), 151–158 
  11. [11] Popescu D., Stanley depth of multigraded modules, J. Algebra, 2009, 321(10), 2782–2797 http://dx.doi.org/10.1016/j.jalgebra.2009.03.009[Crossref][WoS] Zbl1179.13016
  12. [12] Rauf A., Stanley decompositions, pretty clean filtrations and reductions modulo regular elements, Bull. Soc. Sci. Math. Roumanie, 2007, 50(98), 347–354 Zbl1155.13311
  13. [13] Rauf A., Depth and Stanley depth of multigraded modules, Comm. Algebra, to appear 
  14. [14] Shen Y., Stanley depth of complete intersection monomial ideals and upper-discrete partitions, J. Algebra, 2009, 321, 1285–1292 http://dx.doi.org/10.1016/j.jalgebra.2008.11.010[WoS][Crossref] Zbl1167.13010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.