Depth and Stanley depth of the facet ideals of some classes of simplicial complexes
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 753-766
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWei, Xiaoqi, and Gu, Yan. "Depth and Stanley depth of the facet ideals of some classes of simplicial complexes." Czechoslovak Mathematical Journal 67.3 (2017): 753-766. <http://eudml.org/doc/294092>.
@article{Wei2017,
abstract = {Let $\Delta _\{n,d\}$ (resp. $\Delta _\{n,d\}^\{\prime \}$) be the simplicial complex and the facet ideal $I_\{n,d\}=(x_\{1\}\cdots x_\{d\},x_\{d-k+1\}\cdots x_\{2d-k\},\ldots ,x_\{n-d+1\}\cdots x_\{n\})$ (resp. $J_\{n,d\}=(x_\{1\}\cdots x_\{d\},x_\{d-k+1\}\cdots x_\{2d-k\},\ldots ,x_\{n-2d+2k+1\}\cdots x_\{n-d+2k\},x_\{n-d+k+1\}\cdots x_\{n\}x_\{1\}\cdots x_\{k\})$). When $d\ge 2k+1$, we give the exact formulas to compute the depth and Stanley depth of quotient rings $S/J_\{n,d\}$ and $S/I_\{n,d\}^t$ for all $t\ge 1$. When $d=2k$, we compute the depth and Stanley depth of quotient rings $S/J_\{n,d\}$ and $S/I_\{n,d\}$, and give lower bounds for the depth and Stanley depth of quotient rings $S/I_\{n,d\}^t$ for all $t\ge 1$.},
author = {Wei, Xiaoqi, Gu, Yan},
journal = {Czechoslovak Mathematical Journal},
keywords = {monomial ideal; facet ideal; depth; Stanley depth},
language = {eng},
number = {3},
pages = {753-766},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Depth and Stanley depth of the facet ideals of some classes of simplicial complexes},
url = {http://eudml.org/doc/294092},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Wei, Xiaoqi
AU - Gu, Yan
TI - Depth and Stanley depth of the facet ideals of some classes of simplicial complexes
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 753
EP - 766
AB - Let $\Delta _{n,d}$ (resp. $\Delta _{n,d}^{\prime }$) be the simplicial complex and the facet ideal $I_{n,d}=(x_{1}\cdots x_{d},x_{d-k+1}\cdots x_{2d-k},\ldots ,x_{n-d+1}\cdots x_{n})$ (resp. $J_{n,d}=(x_{1}\cdots x_{d},x_{d-k+1}\cdots x_{2d-k},\ldots ,x_{n-2d+2k+1}\cdots x_{n-d+2k},x_{n-d+k+1}\cdots x_{n}x_{1}\cdots x_{k})$). When $d\ge 2k+1$, we give the exact formulas to compute the depth and Stanley depth of quotient rings $S/J_{n,d}$ and $S/I_{n,d}^t$ for all $t\ge 1$. When $d=2k$, we compute the depth and Stanley depth of quotient rings $S/J_{n,d}$ and $S/I_{n,d}$, and give lower bounds for the depth and Stanley depth of quotient rings $S/I_{n,d}^t$ for all $t\ge 1$.
LA - eng
KW - monomial ideal; facet ideal; depth; Stanley depth
UR - http://eudml.org/doc/294092
ER -
References
top- Anwar, I., Popescu, D., 10.1016/j.jalgebra.2007.06.005, J. Algebra 318 (2007), 1027-1031. (2007) Zbl1132.13009MR2371984DOI10.1016/j.jalgebra.2007.06.005
- Bouchat, R. R., 10.1216/JCA-2010-2-1-1, J. Commut. Algebra 2 (2010), 1-35. (2010) Zbl1238.13028MR2607099DOI10.1216/JCA-2010-2-1-1
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
- Cimpoeaş, M., 10.2478/s11533-009-0037-0, Cent. Eur. J. Math. 7 (2009), 629-634. (2009) Zbl1185.13027MR2563437DOI10.2478/s11533-009-0037-0
- Cimpoeaş, M., On the Stanley depth of edge ideals of line and cyclic graphs, Rom. J. Math. Comput. Sci. 5 (2015), 70-75. (2015) Zbl06664242MR3371758
- Duval, A. M., Goeckner, B., Klivans, C. J., Martin, J. L., 10.1016/j.aim.2016.05.011, Adv. Math. 299 (2016), 381-395. (2016) Zbl1341.05256MR3519473DOI10.1016/j.aim.2016.05.011
- Faridi, S., 10.1007/s00229-002-0293-9, Manuscr. Math. 109 (2002), 159-174. (2002) Zbl1005.13006MR1935027DOI10.1007/s00229-002-0293-9
- Herzog, J., Vladoiu, M., Zheng, X., 10.1016/j.jalgebra.2008.01.006, J. Algebra 322 (2009), 3151-3169. (2009) Zbl1186.13019MR2567414DOI10.1016/j.jalgebra.2008.01.006
- Morey, S., 10.1080/00927870903286900, Commun. Algebra 38 (2010), 4042-4055. (2010) Zbl1210.13020MR2764849DOI10.1080/00927870903286900
- Okazaki, R., 10.1216/JCA-2011-3-1-83, J. Commut. Algebra 3 (2011), 83-88. (2011) Zbl1242.13025MR2782700DOI10.1216/JCA-2011-3-1-83
- Popescu, D., 10.1016/j.jalgebra.2009.03.009, J. Algebra 321 (2009), 2782-2797. (2009) Zbl1179.13016MR2512626DOI10.1016/j.jalgebra.2009.03.009
- Rauf, A., 10.1080/00927870902829056, Commun. Algebra 38 (2010), 773-784. (2010) Zbl1193.13025MR2598911DOI10.1080/00927870902829056
- Stanley, R. P., 10.1007/BF01394054, Invent. Math. 68 (1982), 175-193. (1982) Zbl0516.10009MR0666158DOI10.1007/BF01394054
- Ştefan, A., Stanley depth of powers of the path ideal, Available at arXiv:1409.6072v1 [math.AC] (2014), 6 pages. (2014)
- Villarreal, R. H., Monomial Algebras, Pure and Applied Mathematics 238, Marcel Dekker, New York (2001). (2001) Zbl1002.13010MR1800904
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.