Limit theorems in the space of analytic functions for the Hurwitz zeta-function with an algebraic irrational parameter
Antanas Laurinčikas; Jörn Steuding
Open Mathematics (2011)
- Volume: 9, Issue: 2, page 319-327
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAntanas Laurinčikas, and Jörn Steuding. "Limit theorems in the space of analytic functions for the Hurwitz zeta-function with an algebraic irrational parameter." Open Mathematics 9.2 (2011): 319-327. <http://eudml.org/doc/269499>.
@article{AntanasLaurinčikas2011,
abstract = {We prove a limit theorem in the space of analytic functions for the Hurwitz zeta-function with algebraic irrational parameter.},
author = {Antanas Laurinčikas, Jörn Steuding},
journal = {Open Mathematics},
keywords = {Hurwitz zeta-function; Value-distribution; Limit theorems; Space of analytic functions; Algebraic irrational; value-distribution; limit theorems; space of analytic functions; algebraic irrational},
language = {eng},
number = {2},
pages = {319-327},
title = {Limit theorems in the space of analytic functions for the Hurwitz zeta-function with an algebraic irrational parameter},
url = {http://eudml.org/doc/269499},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Antanas Laurinčikas
AU - Jörn Steuding
TI - Limit theorems in the space of analytic functions for the Hurwitz zeta-function with an algebraic irrational parameter
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 319
EP - 327
AB - We prove a limit theorem in the space of analytic functions for the Hurwitz zeta-function with algebraic irrational parameter.
LA - eng
KW - Hurwitz zeta-function; Value-distribution; Limit theorems; Space of analytic functions; Algebraic irrational; value-distribution; limit theorems; space of analytic functions; algebraic irrational
UR - http://eudml.org/doc/269499
ER -
References
top- [1] Billingsley P., Convergence of Probability Measures, John Wiley & Sons, New York-London-Sydney, 1968 Zbl0172.21201
- [2] Cassels J.W.S., Footnote to a note of Devenport and Heilbronn, J. London Math. Soc., 1961, 36, 177–184 http://dx.doi.org/10.1112/jlms/s1-36.1.177 Zbl0097.03403
- [3] Conway J.B., Functions of One Complex Variable, Grad. Texas in Math., 11, Springer, New York-Heidelberg, 1973 Zbl0277.30001
- [4] Cramér H., Leadbetter M.R., Stationary and Related Stochastic Processes, John Wiley & Sons, New York-London-Sydney, 1967 Zbl0162.21102
- [5] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Math. Appl., 352, Kluwer, Dordrecht, 1996 Zbl0859.11053
- [6] Laurinčikas A, A limit theorem for the Hurwitz zeta-function with algebraic irrational parameter, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, 322, Trudy po Teorii Chisel, 125–134 (in Russian) Zbl1074.11050
- [7] Laurinčikas A, Steuding J., A limit theorem for the Hurwitz zeta-function with an algebraic irrational parameter, Arch. Math. (Basel), 2005, 85(5), 419–432 Zbl1132.11346
- [8] Laurinčikas A., Steuding J., Complement to the paper: A limit theorem for the Hurwitz zeta-function with an algebraic irrational parameter (Arch. Math. 85 (2005), 419–432), submitted http://dx.doi.org/10.1007/s00013-005-1190-8 Zbl1132.11346
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.