On orbits of the automorphism group on an affine toric variety
Open Mathematics (2013)
- Volume: 11, Issue: 10, page 1713-1724
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topIvan Arzhantsev, and Ivan Bazhov. "On orbits of the automorphism group on an affine toric variety." Open Mathematics 11.10 (2013): 1713-1724. <http://eudml.org/doc/269501>.
@article{IvanArzhantsev2013,
abstract = {Let X be an affine toric variety. The total coordinates on X provide a canonical presentation \[\bar\{X\} \rightarrow X\]
of X as a quotient of a vector space \[\bar\{X\}\]
by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.},
author = {Ivan Arzhantsev, Ivan Bazhov},
journal = {Open Mathematics},
keywords = {Toric variety; Cox ring; Automorphism; Quotient; Luna stratification; toric variety; automorphism; quotient},
language = {eng},
number = {10},
pages = {1713-1724},
title = {On orbits of the automorphism group on an affine toric variety},
url = {http://eudml.org/doc/269501},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Ivan Arzhantsev
AU - Ivan Bazhov
TI - On orbits of the automorphism group on an affine toric variety
JO - Open Mathematics
PY - 2013
VL - 11
IS - 10
SP - 1713
EP - 1724
AB - Let X be an affine toric variety. The total coordinates on X provide a canonical presentation \[\bar{X} \rightarrow X\]
of X as a quotient of a vector space \[\bar{X}\]
by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.
LA - eng
KW - Toric variety; Cox ring; Automorphism; Quotient; Luna stratification; toric variety; automorphism; quotient
UR - http://eudml.org/doc/269501
ER -
References
top- [1] Arzhantsev I.V., Torsors over Luna strata, In: Torsors, Étale Homotopy and Applications to Rational Points, Edinburgh, January 10–14, 2011, London Math. Soc. Lecture Note Ser., 405, Cambridge University Press, Cambridge, 2013
- [2] Arzhantsev I.V., Derenthal U., Hausen J., Laface A., Cox rings, preprint available at http://arxiv.org/abs/1003.4229
- [3] Arzhantsev I.V., Flenner H., Kaliman S., Kutzschebauch F., Zaidenberg M., Flexible varieties and automorphism groups, Duke Math. J., 2013, 162(4), 767–823 http://dx.doi.org/10.1215/00127094-2080132[Crossref][WoS] Zbl1295.14057
- [4] Arzhantsev I.V., Kuyumzhiyan K., Zaidenberg M., Flag varieties, toric varieties, and suspensions: three examples of infinite transitivity, Sb. Math., 2012, 203(7–8), 923–949 http://dx.doi.org/10.1070/SM2012v203n07ABEH004248[WoS][Crossref] Zbl1311.14059
- [5] Arzhantsev I., Zaidenberg M., Acyclic curves and group actions on affine toric surfaces, In: Affine Algebraic Geometry, Osaka, March 3–6, 2011, World Scientific, Singapore, 2013, 1–41 http://dx.doi.org/10.1142/9789814436700_0001[Crossref] Zbl1319.14037
- [6] Bazhov I., On orbits of the automorphism group on a complete toric variety, Beitr. Algebra Geom. (in press), DOI: 10.1007/s13366-011-0084-0 [Crossref] Zbl1327.14224
- [7] Cox D.A., The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., 1995, 4(1), 17–50 Zbl0846.14032
- [8] Cox D.A., Little J.B., Schenck H.K., Toric Varieties, Grad. Stud. Math., 124, American Mathematical Society, Providence, 2011
- [9] Demazure M., Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup., 1970, 3(4), 507–588 Zbl0223.14009
- [10] Freudenburg G., Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia Math. Sci., 136, Invariant Theory and Algebraic Transformation Groups, VII, Springer, Berlin, 2006 Zbl1121.13002
- [11] Fulton W., Introduction to Toric Varieties, Ann. of Math. Stud., 131, Princeton University Press, Princeton, 1993 Zbl0813.14039
- [12] Hausen J., Three lectures on Cox rings, In: Torsors, Étale Homotopy and Applications to Rational Points, Edinburgh, January 10–14, 2011, London Math. Soc. Lecture Note Ser., 405, Cambridge University Press, Cambridge, 2013, 3–60 http://dx.doi.org/10.1017/CBO9781139525350.002[Crossref]
- [13] Humphreys J.E., Linear Algebraic Groups, Grad. Texts in Math., 21, Springer, New York-Heidelberg, 1975 http://dx.doi.org/10.1007/978-1-4684-9443-3[Crossref]
- [14] Kuttler J., Reichstein Z., Is the Luna stratification intrinsic?, Ann. Inst. Fourier (Grenoble), 2008, 58(2), 689–721 http://dx.doi.org/10.5802/aif.2365[Crossref] Zbl1145.14047
- [15] Luna D., Slices étales, In: Sur les Groupes Algébriques, Bull. Soc. Math. France Mém., 1973, 33, 81–105 Zbl0286.14014
- [16] Oda T., Convex Bodies and Algebraic Geometry, Ergeb. Math. Grenzgeb., 15, Springer, Berlin, 1988
- [17] Popov V.L., Vinberg E.B., Invariant theory, In: Algebraic Geometry, IV, Encyclopaedia Math. Sci., 55, Springer, Berlin, 1994, 123–284 http://dx.doi.org/10.1007/978-3-662-03073-8_2[Crossref]
- [18] Ramanujam C.P., A note on automorphism group of algebraic variety, Math. Ann., 1964, 156(1), 25–33 http://dx.doi.org/10.1007/BF01359978[Crossref]
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.