On orbits of the automorphism group on an affine toric variety

Ivan Arzhantsev; Ivan Bazhov

Open Mathematics (2013)

  • Volume: 11, Issue: 10, page 1713-1724
  • ISSN: 2391-5455

Abstract

top
Let X be an affine toric variety. The total coordinates on X provide a canonical presentation X ¯ X of X as a quotient of a vector space X ¯ by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.

How to cite

top

Ivan Arzhantsev, and Ivan Bazhov. "On orbits of the automorphism group on an affine toric variety." Open Mathematics 11.10 (2013): 1713-1724. <http://eudml.org/doc/269501>.

@article{IvanArzhantsev2013,
abstract = {Let X be an affine toric variety. The total coordinates on X provide a canonical presentation \[\bar\{X\} \rightarrow X\] of X as a quotient of a vector space \[\bar\{X\}\] by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.},
author = {Ivan Arzhantsev, Ivan Bazhov},
journal = {Open Mathematics},
keywords = {Toric variety; Cox ring; Automorphism; Quotient; Luna stratification; toric variety; automorphism; quotient},
language = {eng},
number = {10},
pages = {1713-1724},
title = {On orbits of the automorphism group on an affine toric variety},
url = {http://eudml.org/doc/269501},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Ivan Arzhantsev
AU - Ivan Bazhov
TI - On orbits of the automorphism group on an affine toric variety
JO - Open Mathematics
PY - 2013
VL - 11
IS - 10
SP - 1713
EP - 1724
AB - Let X be an affine toric variety. The total coordinates on X provide a canonical presentation \[\bar{X} \rightarrow X\] of X as a quotient of a vector space \[\bar{X}\] by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.
LA - eng
KW - Toric variety; Cox ring; Automorphism; Quotient; Luna stratification; toric variety; automorphism; quotient
UR - http://eudml.org/doc/269501
ER -

References

top
  1. [1] Arzhantsev I.V., Torsors over Luna strata, In: Torsors, Étale Homotopy and Applications to Rational Points, Edinburgh, January 10–14, 2011, London Math. Soc. Lecture Note Ser., 405, Cambridge University Press, Cambridge, 2013 
  2. [2] Arzhantsev I.V., Derenthal U., Hausen J., Laface A., Cox rings, preprint available at http://arxiv.org/abs/1003.4229 
  3. [3] Arzhantsev I.V., Flenner H., Kaliman S., Kutzschebauch F., Zaidenberg M., Flexible varieties and automorphism groups, Duke Math. J., 2013, 162(4), 767–823 http://dx.doi.org/10.1215/00127094-2080132[Crossref][WoS] Zbl1295.14057
  4. [4] Arzhantsev I.V., Kuyumzhiyan K., Zaidenberg M., Flag varieties, toric varieties, and suspensions: three examples of infinite transitivity, Sb. Math., 2012, 203(7–8), 923–949 http://dx.doi.org/10.1070/SM2012v203n07ABEH004248[WoS][Crossref] Zbl1311.14059
  5. [5] Arzhantsev I., Zaidenberg M., Acyclic curves and group actions on affine toric surfaces, In: Affine Algebraic Geometry, Osaka, March 3–6, 2011, World Scientific, Singapore, 2013, 1–41 http://dx.doi.org/10.1142/9789814436700_0001[Crossref] Zbl1319.14037
  6. [6] Bazhov I., On orbits of the automorphism group on a complete toric variety, Beitr. Algebra Geom. (in press), DOI: 10.1007/s13366-011-0084-0 [Crossref] Zbl1327.14224
  7. [7] Cox D.A., The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., 1995, 4(1), 17–50 Zbl0846.14032
  8. [8] Cox D.A., Little J.B., Schenck H.K., Toric Varieties, Grad. Stud. Math., 124, American Mathematical Society, Providence, 2011 
  9. [9] Demazure M., Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup., 1970, 3(4), 507–588 Zbl0223.14009
  10. [10] Freudenburg G., Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia Math. Sci., 136, Invariant Theory and Algebraic Transformation Groups, VII, Springer, Berlin, 2006 Zbl1121.13002
  11. [11] Fulton W., Introduction to Toric Varieties, Ann. of Math. Stud., 131, Princeton University Press, Princeton, 1993 Zbl0813.14039
  12. [12] Hausen J., Three lectures on Cox rings, In: Torsors, Étale Homotopy and Applications to Rational Points, Edinburgh, January 10–14, 2011, London Math. Soc. Lecture Note Ser., 405, Cambridge University Press, Cambridge, 2013, 3–60 http://dx.doi.org/10.1017/CBO9781139525350.002[Crossref] 
  13. [13] Humphreys J.E., Linear Algebraic Groups, Grad. Texts in Math., 21, Springer, New York-Heidelberg, 1975 http://dx.doi.org/10.1007/978-1-4684-9443-3[Crossref] 
  14. [14] Kuttler J., Reichstein Z., Is the Luna stratification intrinsic?, Ann. Inst. Fourier (Grenoble), 2008, 58(2), 689–721 http://dx.doi.org/10.5802/aif.2365[Crossref] Zbl1145.14047
  15. [15] Luna D., Slices étales, In: Sur les Groupes Algébriques, Bull. Soc. Math. France Mém., 1973, 33, 81–105 Zbl0286.14014
  16. [16] Oda T., Convex Bodies and Algebraic Geometry, Ergeb. Math. Grenzgeb., 15, Springer, Berlin, 1988 
  17. [17] Popov V.L., Vinberg E.B., Invariant theory, In: Algebraic Geometry, IV, Encyclopaedia Math. Sci., 55, Springer, Berlin, 1994, 123–284 http://dx.doi.org/10.1007/978-3-662-03073-8_2[Crossref] 
  18. [18] Ramanujam C.P., A note on automorphism group of algebraic variety, Math. Ann., 1964, 156(1), 25–33 http://dx.doi.org/10.1007/BF01359978[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.