Is the Luna stratification intrinsic?

Jochen Kuttler[1]; Zinovy Reichstein[2]

  • [1] University of British Columbia Department of Mathematics Vancouver, BC V6T 1Z2 (Canada) Current address: University of Alberta Department of Mathematical and Statistical Sciences Edmonton, AB T6G 2G1 (Canada)
  • [2] University of British Columbia Department of Mathematics Vancouver, BC V6T 1Z2 (Canada)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 2, page 689-721
  • ISSN: 0373-0956

Abstract

top
Let G GL ( V ) be a representation of a reductive linear algebraic group G on a finite-dimensional vector space V , defined over an algebraically closed field of characteristic zero. The categorical quotient X = V // G carries a natural stratification, due to D. Luna. This paper addresses the following questions:(i) Is the Luna stratification of X intrinsic? That is, does every automorphism of V // G map each stratum to another stratum?(ii) Are the individual Luna strata in X intrinsic? That is, does every automorphism of V // G map each stratum to itself?In general, the Luna stratification is not intrinsic. Nevertheless, we give positive answers to questions (i) and (ii) for interesting families of representations.

How to cite

top

Kuttler, Jochen, and Reichstein, Zinovy. "Is the Luna stratification intrinsic?." Annales de l’institut Fourier 58.2 (2008): 689-721. <http://eudml.org/doc/10329>.

@article{Kuttler2008,
abstract = {Let $G \rightarrow \operatorname\{GL\}(V)$ be a representation of a reductive linear algebraic group $G$ on a finite-dimensional vector space $V$, defined over an algebraically closed field of characteristic zero. The categorical quotient $X = V \mathmo\{//\}G$ carries a natural stratification, due to D. Luna. This paper addresses the following questions:(i) Is the Luna stratification of $X$ intrinsic? That is, does every automorphism of $V \mathmo\{//\}G$ map each stratum to another stratum?(ii) Are the individual Luna strata in $X$ intrinsic? That is, does every automorphism of $V \mathmo\{//\}G$ map each stratum to itself?In general, the Luna stratification is not intrinsic. Nevertheless, we give positive answers to questions (i) and (ii) for interesting families of representations.},
affiliation = {University of British Columbia Department of Mathematics Vancouver, BC V6T 1Z2 (Canada) Current address: University of Alberta Department of Mathematical and Statistical Sciences Edmonton, AB T6G 2G1 (Canada); University of British Columbia Department of Mathematics Vancouver, BC V6T 1Z2 (Canada)},
author = {Kuttler, Jochen, Reichstein, Zinovy},
journal = {Annales de l’institut Fourier},
keywords = {Categorical quotient; Luna stratification; matrix invariant; representation type; categorical quotient},
language = {eng},
number = {2},
pages = {689-721},
publisher = {Association des Annales de l’institut Fourier},
title = {Is the Luna stratification intrinsic?},
url = {http://eudml.org/doc/10329},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Kuttler, Jochen
AU - Reichstein, Zinovy
TI - Is the Luna stratification intrinsic?
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 689
EP - 721
AB - Let $G \rightarrow \operatorname{GL}(V)$ be a representation of a reductive linear algebraic group $G$ on a finite-dimensional vector space $V$, defined over an algebraically closed field of characteristic zero. The categorical quotient $X = V \mathmo{//}G$ carries a natural stratification, due to D. Luna. This paper addresses the following questions:(i) Is the Luna stratification of $X$ intrinsic? That is, does every automorphism of $V \mathmo{//}G$ map each stratum to another stratum?(ii) Are the individual Luna strata in $X$ intrinsic? That is, does every automorphism of $V \mathmo{//}G$ map each stratum to itself?In general, the Luna stratification is not intrinsic. Nevertheless, we give positive answers to questions (i) and (ii) for interesting families of representations.
LA - eng
KW - Categorical quotient; Luna stratification; matrix invariant; representation type; categorical quotient
UR - http://eudml.org/doc/10329
ER -

References

top
  1. M. Artin, On Azumaya algebras and finite dimensional representations of rings, J. Algebra 11 (1969), 532-563 Zbl0222.16007MR242890
  2. H. Bass, W. Haboush, Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), 463-482 Zbl0602.14047MR808732
  3. A. Borel, Linear Algebraic Groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR1102012
  4. J.-L. Colliot-Thélène, J.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles, Math. Ann. 244 (1979), 105-134 Zbl0418.14016MR550842
  5. V. Drensky, E. Formanek, Polynomial identity rings, (2004), Birkhäuser Verlag, Basel Zbl1077.16025MR2064082
  6. E. Formanek, The polynomial identities and invariants of n × n matrices., CBMS Regional Conference Series in Mathematics 78 (1991), American Mathematical Society, Providence, RI Zbl0714.16001MR1088481
  7. J. H. Grace, A. Young, The Algebra of Invariants, (1903), Cambridge University Press Zbl34.0114.01
  8. H. Kraft, Geometrische Methoden in der Invariantentheorie, (1984), Friedr. Vieweg & Sohn, Braunschweig Zbl0569.14003MR768181
  9. J. Kuttler, Z. Reichstein, Is the Luna stratification intrinsic? Zbl1145.14047
  10. L. Le Bruyn, C. Procesi, Étale local structure of matrix invariants and concomitants, in Algebraic groups Utrecht 1986, Lecture Notes in Math. 1271 (1987), 143-175 Zbl0634.14034MR911138
  11. L. Le Bruyn, Z. Reichstein, Smoothness in algebraic geography, Proc. London Math. Soc. (3), Lecture Notes in Math. 79 (1999), 158-190 Zbl1032.16012MR1687535
  12. M. Lorenz, On the Cohen-Macaulay property of multiplicative invariants, Trans. Amer. Math. Soc. 358 (2006), 1605-1617 Zbl1129.13005MR2186988
  13. D. Luna, Slices étales, Sur les groupes algébriques (1973), 81-105, Soc. Math. France, Mémoire 33, Paris Zbl0286.14014MR318167
  14. D. Luna, R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J. 46 (1979), 487-496 Zbl0444.14010MR544240
  15. D. Mumford, The red book of varieties and schemes, 1358 (1988), Springer-Verlag, Berlin Zbl0658.14001MR971985
  16. D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
  17. V. L. Popov, Criteria for the stability of the action of a semisimple group on a factorial manifold, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 523-531 Zbl0261.14011MR262416
  18. V. L. Popov, Generically multiple transitive algebraic group actions, Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces (2004) Zbl1135.14038
  19. V. L. Popov, E. B. Vinberg, Invariant Theory, Algebraic Geometry IV, Encyclopedia of Mathematical Sciences, Springer 55 (1994), 123-284 Zbl0789.14008
  20. D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375-386 Zbl0179.12301MR210944
  21. C. Procesi, The invariant theory of n × n matrices, Advances in Math. 19 (1976), 306-381 Zbl0331.15021MR419491
  22. Z. Reichstein, On automorphisms of matrix invariants, Trans. Amer. Math. Soc. 340 (1993), 353-371 Zbl0820.16021MR1124173
  23. Z. Reichstein, On automorphisms of matrix invariants induced from the trace ring, Linear Algebra Appl. 193 (1993), 51-74 Zbl0802.16017MR1240272
  24. Z. Reichstein, N. Vonessen, Group actions on central simple algebras: a geometric approach, J. Algebra 304 (2006), 1160-1192 Zbl1112.16021MR2265511
  25. R. W. Richardson, Jr., Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math. 16 (1972), 6-14 Zbl0242.14010MR294336
  26. R. W. Richardson, Jr., Conjugacy classes of n -tuples in Lie algebras and algebraic groups, Duke Math J. 57 (1988), 1-35 Zbl0685.20035MR952224
  27. G. W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 37-135 Zbl0449.57009MR573821

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.