Is the Luna stratification intrinsic?
Jochen Kuttler[1]; Zinovy Reichstein[2]
- [1] University of British Columbia Department of Mathematics Vancouver, BC V6T 1Z2 (Canada) Current address: University of Alberta Department of Mathematical and Statistical Sciences Edmonton, AB T6G 2G1 (Canada)
- [2] University of British Columbia Department of Mathematics Vancouver, BC V6T 1Z2 (Canada)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 2, page 689-721
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKuttler, Jochen, and Reichstein, Zinovy. "Is the Luna stratification intrinsic?." Annales de l’institut Fourier 58.2 (2008): 689-721. <http://eudml.org/doc/10329>.
@article{Kuttler2008,
abstract = {Let $G \rightarrow \operatorname\{GL\}(V)$ be a representation of a reductive linear algebraic group $G$ on a finite-dimensional vector space $V$, defined over an algebraically closed field of characteristic zero. The categorical quotient $X = V \mathmo\{//\}G$ carries a natural stratification, due to D. Luna. This paper addresses the following questions:(i) Is the Luna stratification of $X$ intrinsic? That is, does every automorphism of $V \mathmo\{//\}G$ map each stratum to another stratum?(ii) Are the individual Luna strata in $X$ intrinsic? That is, does every automorphism of $V \mathmo\{//\}G$ map each stratum to itself?In general, the Luna stratification is not intrinsic. Nevertheless, we give positive answers to questions (i) and (ii) for interesting families of representations.},
affiliation = {University of British Columbia Department of Mathematics Vancouver, BC V6T 1Z2 (Canada) Current address: University of Alberta Department of Mathematical and Statistical Sciences Edmonton, AB T6G 2G1 (Canada); University of British Columbia Department of Mathematics Vancouver, BC V6T 1Z2 (Canada)},
author = {Kuttler, Jochen, Reichstein, Zinovy},
journal = {Annales de l’institut Fourier},
keywords = {Categorical quotient; Luna stratification; matrix invariant; representation type; categorical quotient},
language = {eng},
number = {2},
pages = {689-721},
publisher = {Association des Annales de l’institut Fourier},
title = {Is the Luna stratification intrinsic?},
url = {http://eudml.org/doc/10329},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Kuttler, Jochen
AU - Reichstein, Zinovy
TI - Is the Luna stratification intrinsic?
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 689
EP - 721
AB - Let $G \rightarrow \operatorname{GL}(V)$ be a representation of a reductive linear algebraic group $G$ on a finite-dimensional vector space $V$, defined over an algebraically closed field of characteristic zero. The categorical quotient $X = V \mathmo{//}G$ carries a natural stratification, due to D. Luna. This paper addresses the following questions:(i) Is the Luna stratification of $X$ intrinsic? That is, does every automorphism of $V \mathmo{//}G$ map each stratum to another stratum?(ii) Are the individual Luna strata in $X$ intrinsic? That is, does every automorphism of $V \mathmo{//}G$ map each stratum to itself?In general, the Luna stratification is not intrinsic. Nevertheless, we give positive answers to questions (i) and (ii) for interesting families of representations.
LA - eng
KW - Categorical quotient; Luna stratification; matrix invariant; representation type; categorical quotient
UR - http://eudml.org/doc/10329
ER -
References
top- M. Artin, On Azumaya algebras and finite dimensional representations of rings, J. Algebra 11 (1969), 532-563 Zbl0222.16007MR242890
- H. Bass, W. Haboush, Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), 463-482 Zbl0602.14047MR808732
- A. Borel, Linear Algebraic Groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR1102012
- J.-L. Colliot-Thélène, J.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles, Math. Ann. 244 (1979), 105-134 Zbl0418.14016MR550842
- V. Drensky, E. Formanek, Polynomial identity rings, (2004), Birkhäuser Verlag, Basel Zbl1077.16025MR2064082
- E. Formanek, The polynomial identities and invariants of matrices., CBMS Regional Conference Series in Mathematics 78 (1991), American Mathematical Society, Providence, RI Zbl0714.16001MR1088481
- J. H. Grace, A. Young, The Algebra of Invariants, (1903), Cambridge University Press Zbl34.0114.01
- H. Kraft, Geometrische Methoden in der Invariantentheorie, (1984), Friedr. Vieweg & Sohn, Braunschweig Zbl0569.14003MR768181
- J. Kuttler, Z. Reichstein, Is the Luna stratification intrinsic? Zbl1145.14047
- L. Le Bruyn, C. Procesi, Étale local structure of matrix invariants and concomitants, in Algebraic groups Utrecht 1986, Lecture Notes in Math. 1271 (1987), 143-175 Zbl0634.14034MR911138
- L. Le Bruyn, Z. Reichstein, Smoothness in algebraic geography, Proc. London Math. Soc. (3), Lecture Notes in Math. 79 (1999), 158-190 Zbl1032.16012MR1687535
- M. Lorenz, On the Cohen-Macaulay property of multiplicative invariants, Trans. Amer. Math. Soc. 358 (2006), 1605-1617 Zbl1129.13005MR2186988
- D. Luna, Slices étales, Sur les groupes algébriques (1973), 81-105, Soc. Math. France, Mémoire 33, Paris Zbl0286.14014MR318167
- D. Luna, R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J. 46 (1979), 487-496 Zbl0444.14010MR544240
- D. Mumford, The red book of varieties and schemes, 1358 (1988), Springer-Verlag, Berlin Zbl0658.14001MR971985
- D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
- V. L. Popov, Criteria for the stability of the action of a semisimple group on a factorial manifold, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 523-531 Zbl0261.14011MR262416
- V. L. Popov, Generically multiple transitive algebraic group actions, Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces (2004) Zbl1135.14038
- V. L. Popov, E. B. Vinberg, Invariant Theory, Algebraic Geometry IV, Encyclopedia of Mathematical Sciences, Springer 55 (1994), 123-284 Zbl0789.14008
- D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375-386 Zbl0179.12301MR210944
- C. Procesi, The invariant theory of matrices, Advances in Math. 19 (1976), 306-381 Zbl0331.15021MR419491
- Z. Reichstein, On automorphisms of matrix invariants, Trans. Amer. Math. Soc. 340 (1993), 353-371 Zbl0820.16021MR1124173
- Z. Reichstein, On automorphisms of matrix invariants induced from the trace ring, Linear Algebra Appl. 193 (1993), 51-74 Zbl0802.16017MR1240272
- Z. Reichstein, N. Vonessen, Group actions on central simple algebras: a geometric approach, J. Algebra 304 (2006), 1160-1192 Zbl1112.16021MR2265511
- R. W. Richardson, Jr., Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math. 16 (1972), 6-14 Zbl0242.14010MR294336
- R. W. Richardson, Jr., Conjugacy classes of -tuples in Lie algebras and algebraic groups, Duke Math J. 57 (1988), 1-35 Zbl0685.20035MR952224
- G. W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 37-135 Zbl0449.57009MR573821
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.