A spectral characterization of skeletal maps
Taras Banakh; Andrzej Kucharski; Marta Martynenko
Open Mathematics (2013)
- Volume: 11, Issue: 1, page 161-169
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topTaras Banakh, Andrzej Kucharski, and Marta Martynenko. "A spectral characterization of skeletal maps." Open Mathematics 11.1 (2013): 161-169. <http://eudml.org/doc/269504>.
@article{TarasBanakh2013,
abstract = {We prove that a map between two realcompact spaces is skeletal if and only if it is homeomorphic to the limit map of a skeletal morphism between ω-spectra with surjective limit projections.},
author = {Taras Banakh, Andrzej Kucharski, Marta Martynenko},
journal = {Open Mathematics},
keywords = {Skeletal map; Inverse spectrum; skeletal map; inverse spectrum},
language = {eng},
number = {1},
pages = {161-169},
title = {A spectral characterization of skeletal maps},
url = {http://eudml.org/doc/269504},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Taras Banakh
AU - Andrzej Kucharski
AU - Marta Martynenko
TI - A spectral characterization of skeletal maps
JO - Open Mathematics
PY - 2013
VL - 11
IS - 1
SP - 161
EP - 169
AB - We prove that a map between two realcompact spaces is skeletal if and only if it is homeomorphic to the limit map of a skeletal morphism between ω-spectra with surjective limit projections.
LA - eng
KW - Skeletal map; Inverse spectrum; skeletal map; inverse spectrum
UR - http://eudml.org/doc/269504
ER -
References
top- [1] Banakh T., Kucharski A., Martynenko M., On functors preserving skeletal maps and skeletally generated compacta, preprint available at http://arxiv.org/abs/1108.4197 Zbl1267.18003
- [2] Chigogidze A., Inverse Spectra, North-Holland Math. Library, 53, North-Holland Publishing, Amsterdam, 1996 http://dx.doi.org/10.1016/S0924-6509(96)80001-8
- [3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
- [4] Fedorchuk V., Chigogidze A.Ch., Absolute Retracts and Infinite-Dimensional Manifolds, Nauka, Moscow, 1992 (in Russian) Zbl0762.54017
- [5] Mioduszewski J., Rudolf L., H-Closed and Extremally Disconnected Hausdorff Spaces, Dissertationes Math. (Rozprawy Mat.), 66, Polish Academy of Sciences, Warsaw, 1969 Zbl0204.22404
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.