# A spectral characterization of skeletal maps

Taras Banakh; Andrzej Kucharski; Marta Martynenko

Open Mathematics (2013)

- Volume: 11, Issue: 1, page 161-169
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topTaras Banakh, Andrzej Kucharski, and Marta Martynenko. "A spectral characterization of skeletal maps." Open Mathematics 11.1 (2013): 161-169. <http://eudml.org/doc/269504>.

@article{TarasBanakh2013,

abstract = {We prove that a map between two realcompact spaces is skeletal if and only if it is homeomorphic to the limit map of a skeletal morphism between ω-spectra with surjective limit projections.},

author = {Taras Banakh, Andrzej Kucharski, Marta Martynenko},

journal = {Open Mathematics},

keywords = {Skeletal map; Inverse spectrum; skeletal map; inverse spectrum},

language = {eng},

number = {1},

pages = {161-169},

title = {A spectral characterization of skeletal maps},

url = {http://eudml.org/doc/269504},

volume = {11},

year = {2013},

}

TY - JOUR

AU - Taras Banakh

AU - Andrzej Kucharski

AU - Marta Martynenko

TI - A spectral characterization of skeletal maps

JO - Open Mathematics

PY - 2013

VL - 11

IS - 1

SP - 161

EP - 169

AB - We prove that a map between two realcompact spaces is skeletal if and only if it is homeomorphic to the limit map of a skeletal morphism between ω-spectra with surjective limit projections.

LA - eng

KW - Skeletal map; Inverse spectrum; skeletal map; inverse spectrum

UR - http://eudml.org/doc/269504

ER -

## References

top- [1] Banakh T., Kucharski A., Martynenko M., On functors preserving skeletal maps and skeletally generated compacta, preprint available at http://arxiv.org/abs/1108.4197 Zbl1267.18003
- [2] Chigogidze A., Inverse Spectra, North-Holland Math. Library, 53, North-Holland Publishing, Amsterdam, 1996 http://dx.doi.org/10.1016/S0924-6509(96)80001-8
- [3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
- [4] Fedorchuk V., Chigogidze A.Ch., Absolute Retracts and Infinite-Dimensional Manifolds, Nauka, Moscow, 1992 (in Russian) Zbl0762.54017
- [5] Mioduszewski J., Rudolf L., H-Closed and Extremally Disconnected Hausdorff Spaces, Dissertationes Math. (Rozprawy Mat.), 66, Polish Academy of Sciences, Warsaw, 1969 Zbl0204.22404