Permutations which make transitive groups primitive
Open Mathematics (2009)
- Volume: 7, Issue: 4, page 650-659
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Alperin J.L., Bell R.B., Groups and representations, Graduate Texts in Mathematics, 162 Springer Verlag, 1995 Zbl0839.20001
- [2] Artin E., The orders of the linear groups, Comm. Pure Appl. Math., 1955, 8, 355–365 http://dx.doi.org/10.1002/cpa.3160080302[Crossref] Zbl0065.01204
- [3] Bedoya N., Revestimentos ramificados e o problema da decomponibilidade, PhD thesis, Universidade de São Paulo, São Paulo, Brazil, June, 2008 (in Portuguese)
- [4] Cameron P.J., Permutation groups, London Mathematical Society Student Texts, 45, Cambridge University Press, Cambridge, 1999 Zbl0922.20003
- [5] Conder M., Generating the Mathieu groups and associated Steiner systems, Discrete Math., 1993, 112(1–3), 41–47 http://dx.doi.org/10.1016/0012-365X(93)90222-F[Crossref]
- [6] Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, 3rd edition, Grundlehren der Mathematischen Wissenschaften, 290, Springer-Verlag, New York, 1999 Zbl0915.52003
- [7] Dixon J.D., Mortimer B., Permutation groups, Graduate Texts in Mathematics, 163, Springer Verlag, 1996 Zbl0951.20001
- [8] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.10; 2007 (http://www.gap-system.org)
- [9] Isaacs I.M., Zieschang T., Generating symmetric groups, Am. Math. Monthly, 1995, 102(8), 734–739 http://dx.doi.org/10.2307/2974644[Crossref] Zbl0846.20004
- [10] Neumann P.M., Primitive permutation groups containing a cycle of prime-power length, Bull. London Math. Soc., 1975, 7, 298–299 http://dx.doi.org/10.1112/blms/7.3.298[Crossref] Zbl0319.20001
- [11] Wielandt H., Finite permutation groups, Academic Press, New York-London, 1964 Zbl0138.02501
- [12] Zieschang T., Primitive permutation groups containing a p-cycle, Arch. Math., 1995, 64, 471–474 http://dx.doi.org/10.1007/BF01195128[Crossref] Zbl0823.20001