Chaotic behaviour of the map x ↦ ω(x, f)

Emma D’Aniello; Timothy Steele

Open Mathematics (2014)

  • Volume: 12, Issue: 4, page 584-592
  • ISSN: 2391-5455

Abstract

top
Let K(2ℕ) be the class of compact subsets of the Cantor space 2ℕ, furnished with the Hausdorff metric. Let f ∈ C(2ℕ). We study the map ω f: 2ℕ → K(2ℕ) defined as ω f (x) = ω(x, f), the ω-limit set of x under f. Unlike the case of n-dimensional manifolds, n ≥ 1, we show that ω f is continuous for the generic self-map f of the Cantor space, even though the set of functions for which ω f is everywhere discontinuous on a subsystem is dense in C(2ℕ). The relationships between the continuity of ω f and some forms of chaos are investigated.

How to cite

top

Emma D’Aniello, and Timothy Steele. "Chaotic behaviour of the map x ↦ ω(x, f)." Open Mathematics 12.4 (2014): 584-592. <http://eudml.org/doc/269517>.

@article{EmmaD2014,
abstract = {Let K(2ℕ) be the class of compact subsets of the Cantor space 2ℕ, furnished with the Hausdorff metric. Let f ∈ C(2ℕ). We study the map ω f: 2ℕ → K(2ℕ) defined as ω f (x) = ω(x, f), the ω-limit set of x under f. Unlike the case of n-dimensional manifolds, n ≥ 1, we show that ω f is continuous for the generic self-map f of the Cantor space, even though the set of functions for which ω f is everywhere discontinuous on a subsystem is dense in C(2ℕ). The relationships between the continuity of ω f and some forms of chaos are investigated.},
author = {Emma D’Aniello, Timothy Steele},
journal = {Open Mathematics},
keywords = {Cantor space; Continuous self-map; ω-limit set; Chaos; continuous self-map; -limit set; chaos},
language = {eng},
number = {4},
pages = {584-592},
title = {Chaotic behaviour of the map x ↦ ω(x, f)},
url = {http://eudml.org/doc/269517},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Emma D’Aniello
AU - Timothy Steele
TI - Chaotic behaviour of the map x ↦ ω(x, f)
JO - Open Mathematics
PY - 2014
VL - 12
IS - 4
SP - 584
EP - 592
AB - Let K(2ℕ) be the class of compact subsets of the Cantor space 2ℕ, furnished with the Hausdorff metric. Let f ∈ C(2ℕ). We study the map ω f: 2ℕ → K(2ℕ) defined as ω f (x) = ω(x, f), the ω-limit set of x under f. Unlike the case of n-dimensional manifolds, n ≥ 1, we show that ω f is continuous for the generic self-map f of the Cantor space, even though the set of functions for which ω f is everywhere discontinuous on a subsystem is dense in C(2ℕ). The relationships between the continuity of ω f and some forms of chaos are investigated.
LA - eng
KW - Cantor space; Continuous self-map; ω-limit set; Chaos; continuous self-map; -limit set; chaos
UR - http://eudml.org/doc/269517
ER -

References

top
  1. [1] Akin E., Auslander J., Berg K., When is a transitive map chaotic?, In: Convergence in Ergodic Theory and Probability, Columbus, June, 1993, Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996 
  2. [2] Banks J., Brooks J., Cairns G., Davis G., Stacey P., On Devaney’s definition of chaos, Amer. Math. Monthly, 1992, 99(4), 332–334 http://dx.doi.org/10.2307/2324899 Zbl0758.58019
  3. [3] Bernardes N.C. Jr., Darji U.B., Graph theoretic structure of maps of the Cantor space, Adv. Math., 2012, 231(3–4), 1655–1680 http://dx.doi.org/10.1016/j.aim.2012.05.024 
  4. [4] Blanchard F., Topological chaos: what does this mean?, J. Difference Equ. Appl., 2009, 15(1), 23–46 http://dx.doi.org/10.1080/10236190802385355 Zbl1253.37013
  5. [5] Blanchard F., Glasner E., Kolyada S., Maass A., On Li-Yorke pairs, J. Reine Angew. Math., 2002, 547, 51–68 
  6. [6] Blanchard F., Huang W., Entropy sets, weakly mixing sets and entropy capacity, Discrete Contin. Dyn. Syst., 2008, 20(2), 275–311 Zbl1151.37019
  7. [7] Block L.S., Coppel W.A., Dynamics in One Dimension, Lecture Notes in Math., 1513, Springer, Berlin, 1992 
  8. [8] Blokh A., Bruckner A.M., Humke P.D., Smítal J., The space of ω-limit sets of a continuous map of the interval, Trans. Amer. Math. Soc., 1996, 348(4), 1357–1372 http://dx.doi.org/10.1090/S0002-9947-96-01600-5 Zbl0860.54036
  9. [9] Bowen R., Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 1971, 153, 401–414 http://dx.doi.org/10.1090/S0002-9947-1971-0274707-X Zbl0212.29201
  10. [10] Brin M., Stuck G., Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002 http://dx.doi.org/10.1017/CBO9780511755316 Zbl1314.37002
  11. [11] Bruckner A.M., Ceder J., Chaos in terms of the map x ↦ ω(x, f), Pacific J. Math., 1992, 156(1), 63–96 http://dx.doi.org/10.2140/pjm.1992.156.63 Zbl0728.58020
  12. [12] D’Aniello E., Darji U.B., Chaos among self-maps of the Cantor space, J. Math. Anal. Appl., 2011, 381(2), 781–788 http://dx.doi.org/10.1016/j.jmaa.2011.03.065 Zbl1223.37042
  13. [13] D’Aniello E., Darji U.B., Steele T.H., Ubiquity of odometers in topological dynamical systems, Topology Appl., 2008, 156(2), 240–245 http://dx.doi.org/10.1016/j.topol.2008.07.003 Zbl1153.37003
  14. [14] Devaney R.L., An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley Stud. Nonlinearity, Addison-Wesley, Redwood City, 1989 Zbl0695.58002
  15. [15] Dinaburg E.I., The relation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR, 1970, 190, 19–22 (in Russian) Zbl0196.26401
  16. [16] Glasner E., Weiss B., Sensitive dependence on initial conditions, Nonlinearity, 1993, 6(6), 1067–1075 http://dx.doi.org/10.1088/0951-7715/6/6/014 Zbl0790.58025
  17. [17] Grillenberger C., Constructions of strictly ergodic systems I. Given entropy, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1973, 25(4), 323–334 http://dx.doi.org/10.1007/BF00537161 Zbl0253.28004
  18. [18] Hochman M., Genericity in topological dynamics, Ergodic Theory Dynam. Systems, 2008, 28(1), 125–165 http://dx.doi.org/10.1017/S0143385707000521 Zbl1171.37305
  19. [19] Huang W., Ye X., Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos, Topology Appl., 2002, 117(3), 259–272 http://dx.doi.org/10.1016/S0166-8641(01)00025-6 Zbl0997.54061
  20. [20] Huang W., Ye X., An explicit scattering, non-weakly mixing example and weak disjointness, Nonlinearity, 2002, 15(3), 849–862 http://dx.doi.org/10.1088/0951-7715/15/3/320 Zbl1018.54026
  21. [21] Koscielniak P., On the genericity of chaos, Topology Appl., 2007, 154(9), 1951–1955 http://dx.doi.org/10.1016/j.topol.2007.01.014 
  22. [22] Li T.Y., Yorke J.A., Period three implies chaos, Amer. Math. Monthly, 1975, 82(10), 985–992 http://dx.doi.org/10.2307/2318254 Zbl0351.92021
  23. [23] Mai J., Devaney’s chaos implies existence of s-scrambled sets, Proc. Amer. Math. Soc., 2004, 132(9), 2761–2767 http://dx.doi.org/10.1090/S0002-9939-04-07514-8 Zbl1055.54019
  24. [24] Oxtoby J.C., Measure and Category, Grad. Texts in Math., 2, Springer, New York-Heidelberg-Berlin, 1971 http://dx.doi.org/10.1007/978-1-4615-9964-7 
  25. [25] Weiss B., Topological transitivity and ergodic measures, Math. Systems Theory, 1971, 5, 71–75 http://dx.doi.org/10.1007/BF01691469 Zbl0212.40103
  26. [26] Yano K., A remark on the topological entropy of homeomorphisms, Invent. Math., 1980, 59(3), 215–220 http://dx.doi.org/10.1007/BF01453235 Zbl0434.54010
  27. [27] Ye X., Zang R., On sensitive sets in topological dynamics, Nonlinearity, 2008, 21(7), 1601–1620 http://dx.doi.org/10.1088/0951-7715/21/7/012 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.