Flasque resolutions of reductive group schemes
Open Mathematics (2013)
- Volume: 11, Issue: 7, page 1159-1176
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topCristian González-Avilés. "Flasque resolutions of reductive group schemes." Open Mathematics 11.7 (2013): 1159-1176. <http://eudml.org/doc/269525>.
@article{CristianGonzález2013,
abstract = {We generalize Colliot-Thélène’s construction of flasque resolutions of reductive group schemes over a field to a broad class of base schemes.},
author = {Cristian González-Avilés},
journal = {Open Mathematics},
keywords = {Reductive group schemes; Flasque resolutions; Abelianized cohomology; reductive group schemes; flasque resolutions; abelianized cohomology},
language = {eng},
number = {7},
pages = {1159-1176},
title = {Flasque resolutions of reductive group schemes},
url = {http://eudml.org/doc/269525},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Cristian González-Avilés
TI - Flasque resolutions of reductive group schemes
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1159
EP - 1176
AB - We generalize Colliot-Thélène’s construction of flasque resolutions of reductive group schemes over a field to a broad class of base schemes.
LA - eng
KW - Reductive group schemes; Flasque resolutions; Abelianized cohomology; reductive group schemes; flasque resolutions; abelianized cohomology
UR - http://eudml.org/doc/269525
ER -
References
top- [1] Artin M., Grothendieck A., Verdier J.L. (Eds.), Théorie des Topos et Cohomologie Étale des Schémas III, Séminaire de Géométrie Algébrique du Bois-Marie 1963-64 (SGA 4), Lecture Notes in Math., 305, Springer, Berlin-New York, 1973
- [2] Borovoi M., Abelian Galois Cohomology of Reductive Groups, Mem. Amer. Math. Soc., 132(626), American Mathematical Society, Providence, 1998 Zbl0918.20037
- [3] Borovoi M., The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme, Appendix B, preprint available at http://arxiv.org/abs/1112.6020v1 [WoS]
- [4] Bourbaki N., Commutative Algebra, Chapters 1–7, Elem. Math. (Berlin), Springer, Berlin, 1989
- [5] Breen L., On the Classification of 2-Gerbes and 2-Stacks, Astérisque, 225, Soc. Math. France Inst. Henri Poincaré, Paris, 1994 Zbl0818.18005
- [6] Colliot-Thélène J.-L., Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math., 2008, 618, 77–133
- [7] Colliot-Thélène J.-L., Sansuc J.-J., La R-équivalence sur les tores, Ann. Sci. École Norm. Sup., 1977, 10(2), 175–229
- [8] Colliot-Thélène J.-L., Sansuc J.-J., Principal homogeneous spaces under flasque tori: applications, J. Algebra, 1987, 106(1), 148–205 http://dx.doi.org/10.1016/0021-8693(87)90026-3[Crossref] Zbl0597.14014
- [9] Conrad B., Reductive group schemes (SGA Summer school, 2011), available at http://math.stanford.edu/~conrad/papers/luminysga3.pdf
- [10] Demazure M., Grothendieck A. (Eds.), Schémas en Groupes I–III, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Lecture Notes in Math., 151-153, Springer, Berlin-Heidelberg-New York, 1970
- [11] González-Avilés C.D. Quasi-abelian crossed modules and nonabelian cohomology, J. Algebra, 2012, 369, 235–255 http://dx.doi.org/10.1016/j.jalgebra.2012.07.031[WoS][Crossref]
- [12] González-Avilés C., Abelian class groups of reductive group schemes, Israel J. Math. (in press), DOI: 10.1007/s11856-012-0147-4 [Crossref][WoS] Zbl1278.14064
- [13] Grothendieck A., Éléments de Géométrie Algébrique IV. Étude Locale des Schémas et des Morphismes de Schémas, I, IV, Inst. Hautes Études Sci. Publ. Math., 20, 32, Paris, 1964, 1967 Zbl0136.15901
- [14] Harder G., Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math., 1967, 4(3), 165–191 http://dx.doi.org/10.1007/BF01425754[Crossref] Zbl0158.39502
- [15] Milne J.S., Étale Cohomology, Princeton Math. Ser., 33, Princeton University Press, Princeton, 1980
- [16] Milne J.S., Arithmetic Duality Theorems, 2nd ed., BookSurge, Charleston, 2006 Zbl1127.14001
- [17] Raynaud M., Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Math., 119, Springer, Berlin-Heidelberg-New York, 1970 http://dx.doi.org/10.1007/BFb0059504[Crossref] Zbl0195.22701
- [18] Sansuc J.-J., Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math., 1981, 327, 12–80 Zbl0468.14007
- [19] Weibel C.A., An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., 38, Cambridge University Press, Cambridge, 1994 http://dx.doi.org/10.1017/CBO9781139644136[Crossref]
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.