Flasque resolutions of reductive group schemes

Cristian González-Avilés

Open Mathematics (2013)

  • Volume: 11, Issue: 7, page 1159-1176
  • ISSN: 2391-5455

Abstract

top
We generalize Colliot-Thélène’s construction of flasque resolutions of reductive group schemes over a field to a broad class of base schemes.

How to cite

top

Cristian González-Avilés. "Flasque resolutions of reductive group schemes." Open Mathematics 11.7 (2013): 1159-1176. <http://eudml.org/doc/269525>.

@article{CristianGonzález2013,
abstract = {We generalize Colliot-Thélène’s construction of flasque resolutions of reductive group schemes over a field to a broad class of base schemes.},
author = {Cristian González-Avilés},
journal = {Open Mathematics},
keywords = {Reductive group schemes; Flasque resolutions; Abelianized cohomology; reductive group schemes; flasque resolutions; abelianized cohomology},
language = {eng},
number = {7},
pages = {1159-1176},
title = {Flasque resolutions of reductive group schemes},
url = {http://eudml.org/doc/269525},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Cristian González-Avilés
TI - Flasque resolutions of reductive group schemes
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1159
EP - 1176
AB - We generalize Colliot-Thélène’s construction of flasque resolutions of reductive group schemes over a field to a broad class of base schemes.
LA - eng
KW - Reductive group schemes; Flasque resolutions; Abelianized cohomology; reductive group schemes; flasque resolutions; abelianized cohomology
UR - http://eudml.org/doc/269525
ER -

References

top
  1. [1] Artin M., Grothendieck A., Verdier J.L. (Eds.), Théorie des Topos et Cohomologie Étale des Schémas III, Séminaire de Géométrie Algébrique du Bois-Marie 1963-64 (SGA 4), Lecture Notes in Math., 305, Springer, Berlin-New York, 1973 
  2. [2] Borovoi M., Abelian Galois Cohomology of Reductive Groups, Mem. Amer. Math. Soc., 132(626), American Mathematical Society, Providence, 1998 Zbl0918.20037
  3. [3] Borovoi M., The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme, Appendix B, preprint available at http://arxiv.org/abs/1112.6020v1 [WoS] 
  4. [4] Bourbaki N., Commutative Algebra, Chapters 1–7, Elem. Math. (Berlin), Springer, Berlin, 1989 
  5. [5] Breen L., On the Classification of 2-Gerbes and 2-Stacks, Astérisque, 225, Soc. Math. France Inst. Henri Poincaré, Paris, 1994 Zbl0818.18005
  6. [6] Colliot-Thélène J.-L., Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math., 2008, 618, 77–133 
  7. [7] Colliot-Thélène J.-L., Sansuc J.-J., La R-équivalence sur les tores, Ann. Sci. École Norm. Sup., 1977, 10(2), 175–229 
  8. [8] Colliot-Thélène J.-L., Sansuc J.-J., Principal homogeneous spaces under flasque tori: applications, J. Algebra, 1987, 106(1), 148–205 http://dx.doi.org/10.1016/0021-8693(87)90026-3[Crossref] Zbl0597.14014
  9. [9] Conrad B., Reductive group schemes (SGA Summer school, 2011), available at http://math.stanford.edu/~conrad/papers/luminysga3.pdf 
  10. [10] Demazure M., Grothendieck A. (Eds.), Schémas en Groupes I–III, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Lecture Notes in Math., 151-153, Springer, Berlin-Heidelberg-New York, 1970 
  11. [11] González-Avilés C.D. Quasi-abelian crossed modules and nonabelian cohomology, J. Algebra, 2012, 369, 235–255 http://dx.doi.org/10.1016/j.jalgebra.2012.07.031[WoS][Crossref] 
  12. [12] González-Avilés C., Abelian class groups of reductive group schemes, Israel J. Math. (in press), DOI: 10.1007/s11856-012-0147-4 [Crossref][WoS] Zbl1278.14064
  13. [13] Grothendieck A., Éléments de Géométrie Algébrique IV. Étude Locale des Schémas et des Morphismes de Schémas, I, IV, Inst. Hautes Études Sci. Publ. Math., 20, 32, Paris, 1964, 1967 Zbl0136.15901
  14. [14] Harder G., Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math., 1967, 4(3), 165–191 http://dx.doi.org/10.1007/BF01425754[Crossref] Zbl0158.39502
  15. [15] Milne J.S., Étale Cohomology, Princeton Math. Ser., 33, Princeton University Press, Princeton, 1980 
  16. [16] Milne J.S., Arithmetic Duality Theorems, 2nd ed., BookSurge, Charleston, 2006 Zbl1127.14001
  17. [17] Raynaud M., Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Math., 119, Springer, Berlin-Heidelberg-New York, 1970 http://dx.doi.org/10.1007/BFb0059504[Crossref] Zbl0195.22701
  18. [18] Sansuc J.-J., Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math., 1981, 327, 12–80 Zbl0468.14007
  19. [19] Weibel C.A., An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., 38, Cambridge University Press, Cambridge, 1994 http://dx.doi.org/10.1017/CBO9781139644136[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.