The Brauer group of desingularization of moduli spaces of vector bundles over a curve

Indranil Biswas; Amit Hogadi; Yogish Holla

Open Mathematics (2012)

  • Volume: 10, Issue: 4, page 1300-1305
  • ISSN: 2391-5455

Abstract

top
Let C be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle L on C, let M C (r; L) be the coarse moduli space of semistable vector bundles E over C of rank r with ∧r E = L. We show that the Brauer group of any desingularization of M C(r; L) is trivial.

How to cite

top

Indranil Biswas, Amit Hogadi, and Yogish Holla. "The Brauer group of desingularization of moduli spaces of vector bundles over a curve." Open Mathematics 10.4 (2012): 1300-1305. <http://eudml.org/doc/269529>.

@article{IndranilBiswas2012,
abstract = {Let C be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle L on C, let M C (r; L) be the coarse moduli space of semistable vector bundles E over C of rank r with ∧r E = L. We show that the Brauer group of any desingularization of M C(r; L) is trivial.},
author = {Indranil Biswas, Amit Hogadi, Yogish Holla},
journal = {Open Mathematics},
keywords = {Semistable bundle; Moduli space; Brauer group; semistable bundle; moduli space},
language = {eng},
number = {4},
pages = {1300-1305},
title = {The Brauer group of desingularization of moduli spaces of vector bundles over a curve},
url = {http://eudml.org/doc/269529},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Indranil Biswas
AU - Amit Hogadi
AU - Yogish Holla
TI - The Brauer group of desingularization of moduli spaces of vector bundles over a curve
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1300
EP - 1305
AB - Let C be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle L on C, let M C (r; L) be the coarse moduli space of semistable vector bundles E over C of rank r with ∧r E = L. We show that the Brauer group of any desingularization of M C(r; L) is trivial.
LA - eng
KW - Semistable bundle; Moduli space; Brauer group; semistable bundle; moduli space
UR - http://eudml.org/doc/269529
ER -

References

top
  1. [1] Abramovich D., Corti A., Vistoli A., Twisted bundles and admissible covers, Comm. Algebra, 2003, 31(8), 3547–3618 http://dx.doi.org/10.1081/AGB-120022434 Zbl1077.14034
  2. [2] Balaji V., Cohomology of certain moduli spaces of vector bundles, Proc. Indian Acad. Sci. Math. Sci., 1988, 98(1), 1–24 http://dx.doi.org/10.1007/BF02880966 Zbl0687.14014
  3. [3] Balaji V., Biswas I., Gabber O., Nagaraj D.S., Brauer obstruction for a universal vector bundle, C. R. Math. Acad. Sci. Paris, 2007, 345(5), 265–268 http://dx.doi.org/10.1016/j.crma.2007.07.011 Zbl1127.14018
  4. [4] Gille P., Szamuely T., Central Simple Algebras and Galois Cohomology, Cambridge Stud. Adv. Math., 101, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO9780511607219 Zbl1137.12001
  5. [5] Jarod A., Good Moduli Spaces for Artin Stacks, PhD thesis, Stanford University, 2008 Zbl1314.14095
  6. [6] King A., Schofield A., Rationality of moduli of vector bundles on curves, Indag. Math. (N.S.), 1999, 10(4), 519–535 http://dx.doi.org/10.1016/S0019-3577(00)87905-7 Zbl1043.14502
  7. [7] Laumon G., Moret-Bailly L., Champs Algébriques, Ergeb. Math. Grenzgeb., 39, Springer, Berlin, 2000 
  8. [8] Narasimhan M.S., Ramanan S., Moduli of vector bundles on a compact Riemann surface, Ann. of Math., 1969, 89(1), 14–51 http://dx.doi.org/10.2307/1970807 Zbl0186.54902
  9. [9] Nitsure N., Cohomology of desingularization of moduli space of vector bundles, Compositio Math., 1989, 69(3), 309–339 Zbl0702.14007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.