Bloch-to-Hardy composition operators

Evgueni Doubtsov; Andrei Petrov

Open Mathematics (2013)

  • Volume: 11, Issue: 6, page 985-1003
  • ISSN: 2391-5455

Abstract

top
Let φ be a holomorphic mapping between complex unit balls. We characterize those regular φ for which the composition operators C φ: f ↦ f ○ φ map the Bloch space into the Hardy space.

How to cite

top

Evgueni Doubtsov, and Andrei Petrov. "Bloch-to-Hardy composition operators." Open Mathematics 11.6 (2013): 985-1003. <http://eudml.org/doc/269539>.

@article{EvgueniDoubtsov2013,
abstract = {Let φ be a holomorphic mapping between complex unit balls. We characterize those regular φ for which the composition operators C φ: f ↦ f ○ φ map the Bloch space into the Hardy space.},
author = {Evgueni Doubtsov, Andrei Petrov},
journal = {Open Mathematics},
keywords = {Bloch space; Composition operator; Hyperbolic Hardy class; composition operator; hyperbolic Hardy class; Hardy space; Bergman space},
language = {eng},
number = {6},
pages = {985-1003},
title = {Bloch-to-Hardy composition operators},
url = {http://eudml.org/doc/269539},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Evgueni Doubtsov
AU - Andrei Petrov
TI - Bloch-to-Hardy composition operators
JO - Open Mathematics
PY - 2013
VL - 11
IS - 6
SP - 985
EP - 1003
AB - Let φ be a holomorphic mapping between complex unit balls. We characterize those regular φ for which the composition operators C φ: f ↦ f ○ φ map the Bloch space into the Hardy space.
LA - eng
KW - Bloch space; Composition operator; Hyperbolic Hardy class; composition operator; hyperbolic Hardy class; Hardy space; Bergman space
UR - http://eudml.org/doc/269539
ER -

References

top
  1. [1] Ahern P., Bruna J., Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of ℂn, Rev. Mat. Iberoamericana, 1988, 4(1), 123–153 http://dx.doi.org/10.4171/RMI/66[Crossref] Zbl0685.42008
  2. [2] Ahern P., Rudin W., Bloch functions, BMO, and boundary zeros, Indiana Univ. Math. J., 1987, 36(1), 131–148 http://dx.doi.org/10.1512/iumj.1987.36.36007[Crossref] 
  3. [3] Beatrous F., Burbea J., Holomorphic Sobolev Spaces on the Ball, Dissertationes Math. (Rozprawy Mat.), 276, Polish Academy of Sciencies, Warsaw, 1989 
  4. [4] Blasco O., Lindström M., Taskinen J., Bloch-to-BMOA compositions in several complex variables, Complex Var. Theory Appl., 2005, 50(14), 1061–1080 Zbl1093.47025
  5. [5] Doubtsov E., Growth spaces on circular domains: composition operators and Carleson measures, C. R. Math. Acad. Sci. Paris, 2009, 347(11–12), 609–612 http://dx.doi.org/10.1016/j.crma.2009.04.003[Crossref] Zbl1166.32004
  6. [6] Doubtsov E., Hyperbolic BMOA classes, J. Math. Anal. Appl., 2012, 391(1), 57–66 http://dx.doi.org/10.1016/j.jmaa.2012.02.032[Crossref] 
  7. [7] Doubtsov E., Bloch-to-BMOA compositions on complex balls, Proc. Amer. Math. Soc., 2012, 140(12), 4217–4225 http://dx.doi.org/10.1090/S0002-9939-2012-11280-8[WoS][Crossref] Zbl1276.32003
  8. [8] Kwon E.G., Composition of Blochs with bounded analytic functions, Proc. Amer. Math. Soc., 1996, 124(5), 1473–1480 http://dx.doi.org/10.1090/S0002-9939-96-03191-7[Crossref] Zbl0845.30024
  9. [9] Kwon E.G., Hyperbolic mean growth of bounded holomorphic functions in the ball, Trans. Amer. Math. Soc., 2003, 355(3), 1269–1294 http://dx.doi.org/10.1090/S0002-9947-02-03169-0[Crossref] Zbl1039.30018
  10. [10] Kwon E.G., Hyperbolic g-function and Bloch pullback operators, J. Math. Anal. Appl., 2005, 309(2), 626–637 http://dx.doi.org/10.1016/j.jmaa.2004.10.042[Crossref] 
  11. [11] Kwon E.G., Bloch-Bergman pullbacks with logarithmic weights, Integral Equations Operator Theory, 2009, 64(2), 251–260 http://dx.doi.org/10.1007/s00020-009-1690-1[Crossref] Zbl1219.47040
  12. [12] Ramey W., Ullrich D., Bounded mean oscillation of Bloch pull-backs, Math. Ann., 1991, 291(4), 591–606 http://dx.doi.org/10.1007/BF01445229[Crossref] Zbl0727.32002
  13. [13] Shi J., Luo L., Composition operators on the Bloch space of several complex variables, Acta Math. Sin. (Engl. Ser.), 2000, 16(1), 85–98 http://dx.doi.org/10.1007/s101149900028[Crossref] Zbl0967.32007
  14. [14] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., 30, Princeton University Press, Princeton, 1970 Zbl0207.13501
  15. [15] Yamashita S., Hyperbolic Hardy class H 1, Math. Scand., 1979, 45(2), 261–266 Zbl0439.30023
  16. [16] Zhu K., Spaces of Holomorphic Functions in the Unit Ball, Grad. Texts in Math., 226, Springer, New York, 2005 
  17. [17] Zygmund A., Trigonometric Series, I, II, 2nd ed., Cambridge University Press, New York, 1959 Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.