Bloch-to-Hardy composition operators
Evgueni Doubtsov; Andrei Petrov
Open Mathematics (2013)
- Volume: 11, Issue: 6, page 985-1003
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topEvgueni Doubtsov, and Andrei Petrov. "Bloch-to-Hardy composition operators." Open Mathematics 11.6 (2013): 985-1003. <http://eudml.org/doc/269539>.
@article{EvgueniDoubtsov2013,
abstract = {Let φ be a holomorphic mapping between complex unit balls. We characterize those regular φ for which the composition operators C φ: f ↦ f ○ φ map the Bloch space into the Hardy space.},
author = {Evgueni Doubtsov, Andrei Petrov},
journal = {Open Mathematics},
keywords = {Bloch space; Composition operator; Hyperbolic Hardy class; composition operator; hyperbolic Hardy class; Hardy space; Bergman space},
language = {eng},
number = {6},
pages = {985-1003},
title = {Bloch-to-Hardy composition operators},
url = {http://eudml.org/doc/269539},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Evgueni Doubtsov
AU - Andrei Petrov
TI - Bloch-to-Hardy composition operators
JO - Open Mathematics
PY - 2013
VL - 11
IS - 6
SP - 985
EP - 1003
AB - Let φ be a holomorphic mapping between complex unit balls. We characterize those regular φ for which the composition operators C φ: f ↦ f ○ φ map the Bloch space into the Hardy space.
LA - eng
KW - Bloch space; Composition operator; Hyperbolic Hardy class; composition operator; hyperbolic Hardy class; Hardy space; Bergman space
UR - http://eudml.org/doc/269539
ER -
References
top- [1] Ahern P., Bruna J., Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of ℂn, Rev. Mat. Iberoamericana, 1988, 4(1), 123–153 http://dx.doi.org/10.4171/RMI/66[Crossref] Zbl0685.42008
- [2] Ahern P., Rudin W., Bloch functions, BMO, and boundary zeros, Indiana Univ. Math. J., 1987, 36(1), 131–148 http://dx.doi.org/10.1512/iumj.1987.36.36007[Crossref]
- [3] Beatrous F., Burbea J., Holomorphic Sobolev Spaces on the Ball, Dissertationes Math. (Rozprawy Mat.), 276, Polish Academy of Sciencies, Warsaw, 1989
- [4] Blasco O., Lindström M., Taskinen J., Bloch-to-BMOA compositions in several complex variables, Complex Var. Theory Appl., 2005, 50(14), 1061–1080 Zbl1093.47025
- [5] Doubtsov E., Growth spaces on circular domains: composition operators and Carleson measures, C. R. Math. Acad. Sci. Paris, 2009, 347(11–12), 609–612 http://dx.doi.org/10.1016/j.crma.2009.04.003[Crossref] Zbl1166.32004
- [6] Doubtsov E., Hyperbolic BMOA classes, J. Math. Anal. Appl., 2012, 391(1), 57–66 http://dx.doi.org/10.1016/j.jmaa.2012.02.032[Crossref]
- [7] Doubtsov E., Bloch-to-BMOA compositions on complex balls, Proc. Amer. Math. Soc., 2012, 140(12), 4217–4225 http://dx.doi.org/10.1090/S0002-9939-2012-11280-8[WoS][Crossref] Zbl1276.32003
- [8] Kwon E.G., Composition of Blochs with bounded analytic functions, Proc. Amer. Math. Soc., 1996, 124(5), 1473–1480 http://dx.doi.org/10.1090/S0002-9939-96-03191-7[Crossref] Zbl0845.30024
- [9] Kwon E.G., Hyperbolic mean growth of bounded holomorphic functions in the ball, Trans. Amer. Math. Soc., 2003, 355(3), 1269–1294 http://dx.doi.org/10.1090/S0002-9947-02-03169-0[Crossref] Zbl1039.30018
- [10] Kwon E.G., Hyperbolic g-function and Bloch pullback operators, J. Math. Anal. Appl., 2005, 309(2), 626–637 http://dx.doi.org/10.1016/j.jmaa.2004.10.042[Crossref]
- [11] Kwon E.G., Bloch-Bergman pullbacks with logarithmic weights, Integral Equations Operator Theory, 2009, 64(2), 251–260 http://dx.doi.org/10.1007/s00020-009-1690-1[Crossref] Zbl1219.47040
- [12] Ramey W., Ullrich D., Bounded mean oscillation of Bloch pull-backs, Math. Ann., 1991, 291(4), 591–606 http://dx.doi.org/10.1007/BF01445229[Crossref] Zbl0727.32002
- [13] Shi J., Luo L., Composition operators on the Bloch space of several complex variables, Acta Math. Sin. (Engl. Ser.), 2000, 16(1), 85–98 http://dx.doi.org/10.1007/s101149900028[Crossref] Zbl0967.32007
- [14] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., 30, Princeton University Press, Princeton, 1970 Zbl0207.13501
- [15] Yamashita S., Hyperbolic Hardy class H 1, Math. Scand., 1979, 45(2), 261–266 Zbl0439.30023
- [16] Zhu K., Spaces of Holomorphic Functions in the Unit Ball, Grad. Texts in Math., 226, Springer, New York, 2005
- [17] Zygmund A., Trigonometric Series, I, II, 2nd ed., Cambridge University Press, New York, 1959 Zbl0085.05601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.