Rank-two vector bundles on Hirzebruch surfaces

Marian Aprodu; Vasile Brînzănescu; Marius Marchitan

Open Mathematics (2012)

  • Volume: 10, Issue: 4, page 1321-1330
  • ISSN: 2391-5455

Abstract

top
We survey some parts of the vast literature on vector bundles on Hirzebruch surfaces, focusing on the rank-two case.

How to cite

top

Marian Aprodu, Vasile Brînzănescu, and Marius Marchitan. "Rank-two vector bundles on Hirzebruch surfaces." Open Mathematics 10.4 (2012): 1321-1330. <http://eudml.org/doc/269548>.

@article{MarianAprodu2012,
abstract = {We survey some parts of the vast literature on vector bundles on Hirzebruch surfaces, focusing on the rank-two case.},
author = {Marian Aprodu, Vasile Brînzănescu, Marius Marchitan},
journal = {Open Mathematics},
keywords = {Vector bundle; Hirzebruch surface; Moduli space; vector bundle; moduli space},
language = {eng},
number = {4},
pages = {1321-1330},
title = {Rank-two vector bundles on Hirzebruch surfaces},
url = {http://eudml.org/doc/269548},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Marian Aprodu
AU - Vasile Brînzănescu
AU - Marius Marchitan
TI - Rank-two vector bundles on Hirzebruch surfaces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1321
EP - 1330
AB - We survey some parts of the vast literature on vector bundles on Hirzebruch surfaces, focusing on the rank-two case.
LA - eng
KW - Vector bundle; Hirzebruch surface; Moduli space; vector bundle; moduli space
UR - http://eudml.org/doc/269548
ER -

References

top
  1. [1] Aprodu M., Brînzănescu V., Fibrés vectoriels de rang 2 sur les surfaces réglées, C. R. Math. Acad. Sci. Paris, 1996, 323(6), 627–630 Zbl0872.14036
  2. [2] Aprodu M., Brînzănescu V., Stable rank-2 vector bundles over ruled surfaces, C. R. Math. Acad. Sci. Paris, 1997, 325(3), 295–300 http://dx.doi.org/10.1016/S0764-4442(97)83959-6 Zbl0905.14025
  3. [3] Aprodu M., Brînzănescu V., Moduli spaces of vector bundles over ruled surfaces, Nagoya Math. J., 1999, 154, 111–122 Zbl0938.14024
  4. [4] Aprodu M., Brînzănescu V., Beilinson type spectral sequences on scrolls, In: Moduli Spaces and Vector Bundles, Guanajuato, December, 2006, London Math. Soc. Lecture Note Ser., 359, Cambridge University Press, Cambridge, 2009, 426–436 http://dx.doi.org/10.1017/CBO9781139107037.014 Zbl1187.14051
  5. [5] Aprodu M., Marchitan M., A note on vector bundles on Hirzebruch surfaces, C. R. Math. Acad. Sci. Paris, 2011, 349(11–12), 687–690 http://dx.doi.org/10.1016/j.crma.2011.04.013 Zbl1243.14033
  6. [6] Brînzănescu V., Algebraic 2-vector bundles on ruled surfaces, Ann. Univ. Ferrara Sez. VII (N.S.), 1991, 37, 55–64 Zbl0795.14010
  7. [7] Brînzănescu V., Holomorphic Vector Bundles over Compact Complex Surfaces, Lecture Notes in Math., 1624, Springer, Berlin, 1996 
  8. [8] Brînzănescu V., Stoia M., Topologically trivial algebraic 2-vector bundles on ruled surfaces. II, In: Algebraic Geometry, Bucharest, August 2–7, 1982, Lecture Notes in Math., 1056, Springer, Berlin, 1984, 34–46 http://dx.doi.org/10.1007/BFb0071768 Zbl0547.14006
  9. [9] Brînzănescu V., Stoia M., Topologically trivial algebraic 2-vector bundles on ruled surfaces. I, Rev. Roumaine Math. Pures Appl., 1984, 29(8), 661–673 Zbl0547.14005
  10. [10] Brosius J.E., Rank-2 vector bundles on a ruled surface. I, Math. Ann., 1983, 265(2), 155–168 http://dx.doi.org/10.1007/BF01460796 Zbl0503.55012
  11. [11] Brosius J.E., Rank-2 vector bundles on a ruled surface. II, Math. Ann., 1983, 266(2), 199–214 http://dx.doi.org/10.1007/BF01458442 Zbl0509.14016
  12. [12] Buchdahl N.P., Stable 2-bundles on Hirzebruch surfaces, Math. Z., 1987, 194(1), 143–152 http://dx.doi.org/10.1007/BF01168013 Zbl0627.14028
  13. [13] Costa L., Miro-Ŕoig R.M., Rationality of moduli spaces of vector bundles on rational surfaces, Nagoya Math. J., 2002, 165, 43–69 Zbl1020.14012
  14. [14] Friedman R., Algebraic Surfaces and Holomorphic Vector Bundles, Universitext, Springer, New York, 1998 http://dx.doi.org/10.1007/978-1-4612-1688-9 
  15. [15] Friedman R., Qin Z., On complex surfaces diffeomorphic to rational surfaces, Invent. Math., 1995, 120(1), 81–117 http://dx.doi.org/10.1007/BF01241123 Zbl0823.14022
  16. [16] Fulger M., Marchitan M., Some splitting criteria on Hirzebruch surfaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 2011, 54(102)(4), 313–323 Zbl1274.14051
  17. [17] Hoppe H.J., Spindler H., Modulräume stabiler 2-Bündel auf Regelflächen, Math. Ann., 1980, 249(2), 127–140 http://dx.doi.org/10.1007/BF01351410 Zbl0414.14018
  18. [18] Marchitan M., Vector Bundles on Complex Varieties, PhD thesis, Institute of Mathematics of the Romanian Academy, 2011 (in Romanian) 
  19. [19] Marchitan M., Omalous bundles on Hirzebruch surfaces (in preparation) Zbl06522214
  20. [20] Maruyama M., Stable vector bundles on an algebraic surface, Nagoya Math. J., 1975, 58, 25–68 Zbl0337.14026
  21. [21] Okonek Chr., Schneider M., Spindler H., Vector Bundles on Complex Projective Spaces, Progr. Math., 3, Birkhäuser, Boston, 1980 Zbl0438.32016
  22. [22] Pragacz P., Srinivas V., Pati V., Diagonal subschemes and vector bundles, Pure Appl. Math. Q., 2008, 4(4), 1233–1278 Zbl1157.14007
  23. [23] Qin Z., Moduli spaces of stable rank-2 bundles on ruled surfaces, Invent. Math., 1992, 110(3), 615–626 http://dx.doi.org/10.1007/BF01231346 Zbl0808.14010
  24. [24] Qin Z., Simple sheaves versus stable sheaves on algebraic surfaces, Math. Z., 1992, 209(4), 559–579 http://dx.doi.org/10.1007/BF02570854 Zbl0735.14014
  25. [25] Qin Z., Equivalence classes of polarizations and moduli spaces of sheaves, J. Differential Geom., 1993, 37(2), 397–415 Zbl0802.14005
  26. [26] Takemoto F., Stable vector bundles on algebraic surfaces, Nagoya Math. J., 1972, 47, 29–48 Zbl0245.14007
  27. [27] Takemoto F., Stable vector bundles on algebraic surfaces. II, Nagoya Math. J., 1973, 52, 173–195 Zbl0296.14012
  28. [28] Walter Ch., Irreducibility of moduli spaces of vector bundles on birationally ruled surfaces, In: Algebraic Geometry, Catania, September, 1993/Barcelona, September, 1994, Lecture Notes in Pure and Appl. Math., 200, Dekker, New York, 1998, 201–211 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.