Rank-two vector bundles on Hirzebruch surfaces
Marian Aprodu; Vasile Brînzănescu; Marius Marchitan
Open Mathematics (2012)
- Volume: 10, Issue: 4, page 1321-1330
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMarian Aprodu, Vasile Brînzănescu, and Marius Marchitan. "Rank-two vector bundles on Hirzebruch surfaces." Open Mathematics 10.4 (2012): 1321-1330. <http://eudml.org/doc/269548>.
@article{MarianAprodu2012,
abstract = {We survey some parts of the vast literature on vector bundles on Hirzebruch surfaces, focusing on the rank-two case.},
author = {Marian Aprodu, Vasile Brînzănescu, Marius Marchitan},
journal = {Open Mathematics},
keywords = {Vector bundle; Hirzebruch surface; Moduli space; vector bundle; moduli space},
language = {eng},
number = {4},
pages = {1321-1330},
title = {Rank-two vector bundles on Hirzebruch surfaces},
url = {http://eudml.org/doc/269548},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Marian Aprodu
AU - Vasile Brînzănescu
AU - Marius Marchitan
TI - Rank-two vector bundles on Hirzebruch surfaces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1321
EP - 1330
AB - We survey some parts of the vast literature on vector bundles on Hirzebruch surfaces, focusing on the rank-two case.
LA - eng
KW - Vector bundle; Hirzebruch surface; Moduli space; vector bundle; moduli space
UR - http://eudml.org/doc/269548
ER -
References
top- [1] Aprodu M., Brînzănescu V., Fibrés vectoriels de rang 2 sur les surfaces réglées, C. R. Math. Acad. Sci. Paris, 1996, 323(6), 627–630 Zbl0872.14036
- [2] Aprodu M., Brînzănescu V., Stable rank-2 vector bundles over ruled surfaces, C. R. Math. Acad. Sci. Paris, 1997, 325(3), 295–300 http://dx.doi.org/10.1016/S0764-4442(97)83959-6 Zbl0905.14025
- [3] Aprodu M., Brînzănescu V., Moduli spaces of vector bundles over ruled surfaces, Nagoya Math. J., 1999, 154, 111–122 Zbl0938.14024
- [4] Aprodu M., Brînzănescu V., Beilinson type spectral sequences on scrolls, In: Moduli Spaces and Vector Bundles, Guanajuato, December, 2006, London Math. Soc. Lecture Note Ser., 359, Cambridge University Press, Cambridge, 2009, 426–436 http://dx.doi.org/10.1017/CBO9781139107037.014 Zbl1187.14051
- [5] Aprodu M., Marchitan M., A note on vector bundles on Hirzebruch surfaces, C. R. Math. Acad. Sci. Paris, 2011, 349(11–12), 687–690 http://dx.doi.org/10.1016/j.crma.2011.04.013 Zbl1243.14033
- [6] Brînzănescu V., Algebraic 2-vector bundles on ruled surfaces, Ann. Univ. Ferrara Sez. VII (N.S.), 1991, 37, 55–64 Zbl0795.14010
- [7] Brînzănescu V., Holomorphic Vector Bundles over Compact Complex Surfaces, Lecture Notes in Math., 1624, Springer, Berlin, 1996
- [8] Brînzănescu V., Stoia M., Topologically trivial algebraic 2-vector bundles on ruled surfaces. II, In: Algebraic Geometry, Bucharest, August 2–7, 1982, Lecture Notes in Math., 1056, Springer, Berlin, 1984, 34–46 http://dx.doi.org/10.1007/BFb0071768 Zbl0547.14006
- [9] Brînzănescu V., Stoia M., Topologically trivial algebraic 2-vector bundles on ruled surfaces. I, Rev. Roumaine Math. Pures Appl., 1984, 29(8), 661–673 Zbl0547.14005
- [10] Brosius J.E., Rank-2 vector bundles on a ruled surface. I, Math. Ann., 1983, 265(2), 155–168 http://dx.doi.org/10.1007/BF01460796 Zbl0503.55012
- [11] Brosius J.E., Rank-2 vector bundles on a ruled surface. II, Math. Ann., 1983, 266(2), 199–214 http://dx.doi.org/10.1007/BF01458442 Zbl0509.14016
- [12] Buchdahl N.P., Stable 2-bundles on Hirzebruch surfaces, Math. Z., 1987, 194(1), 143–152 http://dx.doi.org/10.1007/BF01168013 Zbl0627.14028
- [13] Costa L., Miro-Ŕoig R.M., Rationality of moduli spaces of vector bundles on rational surfaces, Nagoya Math. J., 2002, 165, 43–69 Zbl1020.14012
- [14] Friedman R., Algebraic Surfaces and Holomorphic Vector Bundles, Universitext, Springer, New York, 1998 http://dx.doi.org/10.1007/978-1-4612-1688-9
- [15] Friedman R., Qin Z., On complex surfaces diffeomorphic to rational surfaces, Invent. Math., 1995, 120(1), 81–117 http://dx.doi.org/10.1007/BF01241123 Zbl0823.14022
- [16] Fulger M., Marchitan M., Some splitting criteria on Hirzebruch surfaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 2011, 54(102)(4), 313–323 Zbl1274.14051
- [17] Hoppe H.J., Spindler H., Modulräume stabiler 2-Bündel auf Regelflächen, Math. Ann., 1980, 249(2), 127–140 http://dx.doi.org/10.1007/BF01351410 Zbl0414.14018
- [18] Marchitan M., Vector Bundles on Complex Varieties, PhD thesis, Institute of Mathematics of the Romanian Academy, 2011 (in Romanian)
- [19] Marchitan M., Omalous bundles on Hirzebruch surfaces (in preparation) Zbl06522214
- [20] Maruyama M., Stable vector bundles on an algebraic surface, Nagoya Math. J., 1975, 58, 25–68 Zbl0337.14026
- [21] Okonek Chr., Schneider M., Spindler H., Vector Bundles on Complex Projective Spaces, Progr. Math., 3, Birkhäuser, Boston, 1980 Zbl0438.32016
- [22] Pragacz P., Srinivas V., Pati V., Diagonal subschemes and vector bundles, Pure Appl. Math. Q., 2008, 4(4), 1233–1278 Zbl1157.14007
- [23] Qin Z., Moduli spaces of stable rank-2 bundles on ruled surfaces, Invent. Math., 1992, 110(3), 615–626 http://dx.doi.org/10.1007/BF01231346 Zbl0808.14010
- [24] Qin Z., Simple sheaves versus stable sheaves on algebraic surfaces, Math. Z., 1992, 209(4), 559–579 http://dx.doi.org/10.1007/BF02570854 Zbl0735.14014
- [25] Qin Z., Equivalence classes of polarizations and moduli spaces of sheaves, J. Differential Geom., 1993, 37(2), 397–415 Zbl0802.14005
- [26] Takemoto F., Stable vector bundles on algebraic surfaces, Nagoya Math. J., 1972, 47, 29–48 Zbl0245.14007
- [27] Takemoto F., Stable vector bundles on algebraic surfaces. II, Nagoya Math. J., 1973, 52, 173–195 Zbl0296.14012
- [28] Walter Ch., Irreducibility of moduli spaces of vector bundles on birationally ruled surfaces, In: Algebraic Geometry, Catania, September, 1993/Barcelona, September, 1994, Lecture Notes in Pure and Appl. Math., 200, Dekker, New York, 1998, 201–211
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.