Curvature of hyperkähler quotients

Roger Bielawski

Open Mathematics (2008)

  • Volume: 6, Issue: 2, page 191-203
  • ISSN: 2391-5455

Abstract

top
We prove estimates for the sectional curvature of hyperkähler quotients and give applications to moduli spaces of solutions to Nahm’s equations and Hitchin’s equations.

How to cite

top

Roger Bielawski. "Curvature of hyperkähler quotients." Open Mathematics 6.2 (2008): 191-203. <http://eudml.org/doc/269557>.

@article{RogerBielawski2008,
abstract = {We prove estimates for the sectional curvature of hyperkähler quotients and give applications to moduli spaces of solutions to Nahm’s equations and Hitchin’s equations.},
author = {Roger Bielawski},
journal = {Open Mathematics},
keywords = {hyperkaehler manifolds; monopoles; Hitchin’s equations; infinite-dimensional manifolds; Nahm's equations},
language = {eng},
number = {2},
pages = {191-203},
title = {Curvature of hyperkähler quotients},
url = {http://eudml.org/doc/269557},
volume = {6},
year = {2008},
}

TY - JOUR
AU - Roger Bielawski
TI - Curvature of hyperkähler quotients
JO - Open Mathematics
PY - 2008
VL - 6
IS - 2
SP - 191
EP - 203
AB - We prove estimates for the sectional curvature of hyperkähler quotients and give applications to moduli spaces of solutions to Nahm’s equations and Hitchin’s equations.
LA - eng
KW - hyperkaehler manifolds; monopoles; Hitchin’s equations; infinite-dimensional manifolds; Nahm's equations
UR - http://eudml.org/doc/269557
ER -

References

top
  1. [1] Aubin T., Nonlinear analysis on manifolds. Monge-Ampère equations, Springer Verlag, New York, 1982 Zbl0512.53044
  2. [2] Besse A.L., Einstein manifolds, Springer Verlag, Berlin, 1987 Zbl0613.53001
  3. [3] Donaldson S.K., Nahm’s equations and the classification of monopoles, Comm. Math. Phys., 1984, 96, 387–407 http://dx.doi.org/10.1007/BF01214583 Zbl0603.58042
  4. [4] Donaldson S.K., Boundary value problems for Yang-Mills fields, J. Geom. Phys., 1992, 8, 89–122 http://dx.doi.org/10.1016/0393-0440(92)90044-2 
  5. [5] Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), 1987, 55, 59–126 http://dx.doi.org/10.1112/plms/s3-55.1.59 Zbl0634.53045
  6. [6] Hurtubise J.C., The classification of monopoles for the classical groups, Comm. Math. Phys., 1989, 120, 613–641 http://dx.doi.org/10.1007/BF01260389 Zbl0824.58015
  7. [7] Jost J., Peng X.-W., Group actions gauge transformations and the calculus of variations, Math. Ann., 1992, 293, 595–621 http://dx.doi.org/10.1007/BF01444737 Zbl0772.53011
  8. [8] Lang S., Fundamentals of differential geometry, Springer Verlag, New York, 1999 Zbl0932.53001
  9. [9] Nahm W., The construction of all self-dual multimonopoles by the ADHM method, in: Monopoles in quantum field theory, World Sci. Publishing, Singapore, 1982, 87–94 
  10. [10] Swartz C., Continuity and hypocontinuity for bilinear maps, Math. Z., 1984, 186, 321–329 http://dx.doi.org/10.1007/BF01174886 Zbl0545.46004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.