Positive scalar curvature and the Dirac operator on complete riemannian manifolds
Mikhael Gromov, H. Blaine Lawson (1983)
Publications Mathématiques de l'IHÉS
Similarity:
Mikhael Gromov, H. Blaine Lawson (1983)
Publications Mathématiques de l'IHÉS
Similarity:
Eric Boeckx, Lieven Vanhecke (2001)
Czechoslovak Mathematical Journal
Similarity:
As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.
Manuel de León, Juan C. Marrero (1994)
Extracta Mathematicae
Similarity:
Endo, Hiroshi (2005)
APPS. Applied Sciences
Similarity:
Antonella Nannicini (2002)
Bollettino dell'Unione Matematica Italiana
Similarity:
In this paper we study the curvature tensor of the Riemannian metric defined in a natural way on the moduli space of compact special Lagrangian submanifolds of a Calabi-Yau manifold. We state some curvature properties and we prove that the Ricci curvature is non negative under an assumption on the determinant of .
Nicolescu, Liviu, Pripoae, Gabriel (1999)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Hukum Singh (1985)
Publications de l'Institut Mathématique
Similarity: