Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere

Joël Merker; Masoud Sabzevari

Open Mathematics (2012)

  • Volume: 10, Issue: 5, page 1801-1835
  • ISSN: 2391-5455

Abstract

top
We study effectively the Cartan geometry of Levi-nondegenerate C 6-smooth hypersurfaces M 3 in ℂ2. Notably, we present the so-called curvature function of a related Tanaka-type normal connection explicitly in terms of a graphing function for M, which is the initial, single available datum. Vanishing of this curvature function then characterizes explicitly the local biholomorphic equivalence of such M 3 ⊂ ℂ2 to the Heisenberg sphere ℍ3, such M’s being necessarily real analytic.

How to cite

top

Joël Merker, and Masoud Sabzevari. "Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere." Open Mathematics 10.5 (2012): 1801-1835. <http://eudml.org/doc/269577>.

@article{JoëlMerker2012,
abstract = {We study effectively the Cartan geometry of Levi-nondegenerate C 6-smooth hypersurfaces M 3 in ℂ2. Notably, we present the so-called curvature function of a related Tanaka-type normal connection explicitly in terms of a graphing function for M, which is the initial, single available datum. Vanishing of this curvature function then characterizes explicitly the local biholomorphic equivalence of such M 3 ⊂ ℂ2 to the Heisenberg sphere ℍ3, such M’s being necessarily real analytic.},
author = {Joël Merker, Masoud Sabzevari},
journal = {Open Mathematics},
keywords = {Cartan connection; Heisenberg sphere; Cohomology of Lie algebras; Infinitesimal CR automorphisms; Differential algebra; Curvature function; Bianchi identities; cohomology of Lie algebras; infinitesimal CR automorphisms; differential algebra; curvature function},
language = {eng},
number = {5},
pages = {1801-1835},
title = {Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere},
url = {http://eudml.org/doc/269577},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Joël Merker
AU - Masoud Sabzevari
TI - Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere
JO - Open Mathematics
PY - 2012
VL - 10
IS - 5
SP - 1801
EP - 1835
AB - We study effectively the Cartan geometry of Levi-nondegenerate C 6-smooth hypersurfaces M 3 in ℂ2. Notably, we present the so-called curvature function of a related Tanaka-type normal connection explicitly in terms of a graphing function for M, which is the initial, single available datum. Vanishing of this curvature function then characterizes explicitly the local biholomorphic equivalence of such M 3 ⊂ ℂ2 to the Heisenberg sphere ℍ3, such M’s being necessarily real analytic.
LA - eng
KW - Cartan connection; Heisenberg sphere; Cohomology of Lie algebras; Infinitesimal CR automorphisms; Differential algebra; Curvature function; Bianchi identities; cohomology of Lie algebras; infinitesimal CR automorphisms; differential algebra; curvature function
UR - http://eudml.org/doc/269577
ER -

References

top
  1. [1] Aghasi M., Alizadeh B.M., Merker J., Sabzevari M., A Gröbner-bases algorithm for the computation of the cohomology of Lie (super) algebras, Adv. Appl. Clifford Algebr. (in press), DOI: 10.1007/s00006-011-0319-z Zbl1323.17018
  2. [2] Aghasi M., Merker J., Sabzevari M., Effective Cartan-Tanaka connections for C 6-smooth strongly pseudoconvex hypersurfaces M 3 ⊂ ℂ2, C. R. Math. Acad. Sci. Paris, 2011, 349(15–16), 845–848 http://dx.doi.org/10.1016/j.crma.2011.07.020 Zbl1233.32024
  3. [3] Aghasi M., Merker J., Sabzevari M., Effective Cartan-Tanaka connections on C 6 strongly pseudoconvex hypersurfaces M 3 ⊂ ℂ2, preprint available at http://arxiv.org/abs/1104.1509 Zbl1233.32024
  4. [4] Aghasi M., Merker J., Sabzevari M., Some Maple worksheets accompanying the present publication, preprint available on demand 
  5. [5] Beloshapka V.K., A universal model for a real submanifold, Math. Notes, 2004, 75(3–4), 475–488 http://dx.doi.org/10.1023/B:MATN.0000023331.50692.87 
  6. [6] Beloshapka V., Ezhov V., Schmalz G., Canonical Cartan connection and holomorphic invariants on Engel CR manifolds, Russ. J. Math. Phys., 2007, 14(2), 121–133 http://dx.doi.org/10.1134/S106192080702001X Zbl1140.32024
  7. [7] Boggess A., CR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1991 Zbl0760.32001
  8. [8] Čap A., Schichl H., Parabolic geometries and canonical Cartan connections, Hokkaido Math. J., 2000, 29(3), 453–505 
  9. [9] Čap A., Slovák J., Parabolic Geometries. I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 Zbl1183.53002
  10. [10] Cartan É., Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. I, Ann. Math. Pures Appl., 1932, 11, 17–90 http://dx.doi.org/10.1007/BF02417822 Zbl58.1256.03
  11. [11] Cartan É., Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. II, Ann. Sc. Norm. Super. Pisa Cl. Sci., 1932, 2(1), 333–354 Zbl0005.37401
  12. [12] Chern S.S., Moser J.K., Real hypersurfaces in complex manifolds, Acta Math., 1975, 133, 219–271 http://dx.doi.org/10.1007/BF02392146 Zbl0302.32015
  13. [13] Crampin M., Cartan connections and Lie algebroids, SIGMA Symmetry Integrability Geom. Methods Appl., 2009, 5, #061 
  14. [14] Ezhov V., McLaughlin B., Schmalz G., From Cartan to Tanaka: getting real in the complex world, Notices Amer. Math. Soc., 2011, 58(1), 20–27 Zbl1244.32017
  15. [15] Gaussier H., Merker J., Nonalgebraizable real analytic tubes in ℂn, Math. Z., 2004, 247(2), 337–383 http://dx.doi.org/10.1007/s00209-003-0617-9 Zbl1082.32026
  16. [16] Isaev A., Spherical Tube Hypersurfaces, Lecture Notes in Math., 2020, Springer, Heidelberg, 2011 
  17. [17] Jacobowitz H., An introduction to CR structures, Math. Surveys Monogr., 32, American Mathematical Society, Providence, 1990 Zbl0712.32001
  18. [18] Le A., Cartan connections for CR manifolds, Manuscripta Math., 2007, 122(2), 245–264 http://dx.doi.org/10.1007/s00229-006-0070-2 Zbl1145.32018
  19. [19] Merker J., Lie symmetries and CR geometry, J. Math. Sciences (N.Y.), 2008, 154(6), 817–922 http://dx.doi.org/10.1007/s10958-008-9201-5 Zbl06406043
  20. [20] Merker J., Nonrigid spherical real analytic hypersurfaces in ℂ2, Complex Var. Elliptic Equ., 2010, 55(12), 1155–1182 http://dx.doi.org/10.1080/17476931003728370 Zbl1208.32031
  21. [21] Merker J., Porten E., Holomorphic extension of CR functions, envelopes of holomorphy and removable singularities, IMRS Int. Math. Res. Surv., 2006, #28295 Zbl1149.32019
  22. [22] Merker J., Sabzevari M., Canonical Cartan connection for maximally minimal 5-dimensional generic M 5 ⊂ ℂ4 (in preparation) Zbl1306.32027
  23. [23] Nurowski P., Sparling G.A.J., Three-dimensional Cauchy-Riemann structures and second-order ordinary differential equations, Class. Quant. Gravity, 2003, 20(23), 4995–5016 http://dx.doi.org/10.1088/0264-9381/20/23/004 Zbl1051.32019
  24. [24] Olver P.J., Equivalence, Invariants and Symmetry, Cambridge, Cambridge University Press, 1995 
  25. [25] Sharpe R.W., Differential Geometry, Grad. Texts in Math., 166, Springer, New York, 1997 
  26. [26] Tanaka N., On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ., 1970, 10, 1–82 
  27. [27] Tanaka N., On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J. Math. (N.S.), 1976, 2(1), 131–190 Zbl0346.32010
  28. [28] Webster S.M., Holomorphic differential invariants for an ellipsoidal real hypersurface, Duke Math. J., 2000, 104(3), 463–475 http://dx.doi.org/10.1215/S0012-7094-00-10435-8 Zbl0971.32019
  29. [29] Yamaguchi K., Differential systems associated with simple graded Lie algebras, In: Progress in Differential Geometry, Adv. Stud. Pure Math., 22, Kinokuniya, Tokyo, 1993, 413–494 Zbl0812.17018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.