Some conjectures on the zeros of approximates to the Riemann ≡-function and incomplete gamma functions
Open Mathematics (2011)
- Volume: 9, Issue: 2, page 302-318
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJames Haglund. "Some conjectures on the zeros of approximates to the Riemann ≡-function and incomplete gamma functions." Open Mathematics 9.2 (2011): 302-318. <http://eudml.org/doc/269589>.
@article{JamesHaglund2011,
abstract = {Riemann conjectured that all the zeros of the Riemann ≡-function are real, which is now known as the Riemann Hypothesis (RH). In this article we introduce the study of the zeros of the truncated sums ≡N(z) in Riemann’s uniformly convergent infinite series expansion of ≡(z) involving incomplete gamma functions. We conjecture that when the zeros of ≡N(z) in the first quadrant of the complex plane are listed by increasing real part, their imaginary parts are monotone nondecreasing. We show how this conjecture implies the RH, and discuss some computational evidence for this and other related conjectures.},
author = {James Haglund},
journal = {Open Mathematics},
keywords = {Riemann Hypothesis; Incomplete Gamma function; The Riemann Hypothesis; incomplete gamma function},
language = {eng},
number = {2},
pages = {302-318},
title = {Some conjectures on the zeros of approximates to the Riemann ≡-function and incomplete gamma functions},
url = {http://eudml.org/doc/269589},
volume = {9},
year = {2011},
}
TY - JOUR
AU - James Haglund
TI - Some conjectures on the zeros of approximates to the Riemann ≡-function and incomplete gamma functions
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 302
EP - 318
AB - Riemann conjectured that all the zeros of the Riemann ≡-function are real, which is now known as the Riemann Hypothesis (RH). In this article we introduce the study of the zeros of the truncated sums ≡N(z) in Riemann’s uniformly convergent infinite series expansion of ≡(z) involving incomplete gamma functions. We conjecture that when the zeros of ≡N(z) in the first quadrant of the complex plane are listed by increasing real part, their imaginary parts are monotone nondecreasing. We show how this conjecture implies the RH, and discuss some computational evidence for this and other related conjectures.
LA - eng
KW - Riemann Hypothesis; Incomplete Gamma function; The Riemann Hypothesis; incomplete gamma function
UR - http://eudml.org/doc/269589
ER -
References
top- [1] Apostol T.M., Modular Functions and Dirichlet Series in Number Theory, 2nd ed., Grad. Texts in Math., 41, Springer, New York, 1990
- [2] Conrey J.B., More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. Reine Angew. Math., 1989, 399, 1–26 Zbl0668.10044
- [3] Chudnovsky M., Seymour P., The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B, 2007, 97(3), 350–357 http://dx.doi.org/10.1016/j.jctb.2006.06.001 Zbl1119.05075
- [4] Davenport H., Multiplicative Number Theory, 3rd ed., Grad. Texts in Math., 74, Springer, New York, 2000 Zbl1002.11001
- [5] Edwards H.M., Riemann’s Zeta Function, reprint of the 1974 original, Dover Publications, Mineola, 2001
- [6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions. I, II, McGraw-Hill Book Company, New York-Toronto-London, 1953 Zbl0052.29502
- [7] Gautschi W., The incomplete gamma functions since Tricomi, In: Tricomi’s Ideas and Contemporary Applied Mathematics, Rome/Turin, 1997, Atti Convegni Lincei, 147, Accad. Naz. Lincei, Rome, 1998, 203–237
- [8] Gronwall T.H., Sur les zéros des fonctions P(z) et Q(z) associées à la fonction gamma, Ann. Sci. École Norm. Sup., 1916, 33, 381–393 Zbl46.0563.05
- [9] Hejhal D.A., On a result of G. Pólya concerning the Riemann ≡-function. J. Analyse Math., 1990, 55(1), 59–95 http://dx.doi.org/10.1007/BF02789198 Zbl0723.11039
- [10] Ki H., On the zeros of approximations of the Ramanujan ≡-function, Ramanujan J., 2008, 17(1), 123–143 http://dx.doi.org/10.1007/s11139-007-9046-4 Zbl1238.11080
- [11] Mahler K., Über die Nullstellen der unvollständigen Gammafunktionen, Rend. Circ. Mat. Palermo, 1930, 54, 1–31 http://dx.doi.org/10.1007/BF03021175 Zbl56.0310.01
- [12] Nielsen N., Die Gammafunktion, Chelsea Publishing Co., New York, 1965
- [13] Pólya G., Bemerkung über die Integraldarstellung der Riemannschen ζ-Funktion, Acta Math., 1926, 48(3–4), 305–317 http://dx.doi.org/10.1007/BF02565336
- [14] Selberg A., On the zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad. Oslo I., 1942, 10
- [15] The Riemann Hypothesis, CMS Books Math., Springer, New York, 2008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.