A functional inequality for the survival function of the gamma distribution.
In this work, a symbolic encoding of generalized Di-richlet generating series is found thanks to combinatorial techniques of noncommutative rational power series. This enables to explicit periodic generalized Dirichlet generating series – particularly the coloured polyzêtas – as linear combinations of Hurwitz polyzêtas. Moreover, the noncommutative version of the convolution theorem gives easily rise to an integral representation of Hurwitz polyzêtas. This representation enables us to build the...
In this paper, we introduce a further generalization of the gamma function involving Gauss hypergeometric function 2F1 (a, b; c; z)
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.To get guaranteed machine enclosures of a special function f(x), an upper bound ε(f) of the relative error is needed, where ε(f) itself depends on the error bounds ε(app); ε(eval) of the approximation and evaluation error respectively. The approximation function g(x) ≈ f(x) is a rational function (Remez algorithm), and with sufficiently high polynomial degrees ε(app) becomes...
Riemann conjectured that all the zeros of the Riemann ≡-function are real, which is now known as the Riemann Hypothesis (RH). In this article we introduce the study of the zeros of the truncated sums ≡N(z) in Riemann’s uniformly convergent infinite series expansion of ≡(z) involving incomplete gamma functions. We conjecture that when the zeros of ≡N(z) in the first quadrant of the complex plane are listed by increasing real part, their imaginary parts are monotone nondecreasing. We show how this...