Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation
Qingyong Gao; Fushan Li; Yanguo Wang
Open Mathematics (2011)
- Volume: 9, Issue: 3, page 686-698
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topQingyong Gao, Fushan Li, and Yanguo Wang. "Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation." Open Mathematics 9.3 (2011): 686-698. <http://eudml.org/doc/269597>.
@article{QingyongGao2011,
abstract = {In this paper, we consider the nonlinear Kirchhoff-type equation \[ u\_\{tt\} + M(\left\Vert \{D^m u(t)\} \right\Vert \_2^2 )( - \Delta )^m u + \left| \{u\_t \} \right|^\{q - 2\} u\_t = \left| \{u\_t \} \right|^\{p - 2\} u \]
with initial conditions and homogeneous boundary conditions. Under suitable conditions on the initial datum, we prove that the solution blows up in finite time.},
author = {Qingyong Gao, Fushan Li, Yanguo Wang},
journal = {Open Mathematics},
keywords = {Blow-up; Nonlinear Kirchhoff-type equation; Positive upper bounded initial energy; nonlinear Kirchhoff-type equation; positive upper bounded initial energy; homogeneous boundary conditions},
language = {eng},
number = {3},
pages = {686-698},
title = {Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation},
url = {http://eudml.org/doc/269597},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Qingyong Gao
AU - Fushan Li
AU - Yanguo Wang
TI - Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation
JO - Open Mathematics
PY - 2011
VL - 9
IS - 3
SP - 686
EP - 698
AB - In this paper, we consider the nonlinear Kirchhoff-type equation \[ u_{tt} + M(\left\Vert {D^m u(t)} \right\Vert _2^2 )( - \Delta )^m u + \left| {u_t } \right|^{q - 2} u_t = \left| {u_t } \right|^{p - 2} u \]
with initial conditions and homogeneous boundary conditions. Under suitable conditions on the initial datum, we prove that the solution blows up in finite time.
LA - eng
KW - Blow-up; Nonlinear Kirchhoff-type equation; Positive upper bounded initial energy; nonlinear Kirchhoff-type equation; positive upper bounded initial energy; homogeneous boundary conditions
UR - http://eudml.org/doc/269597
ER -
References
top- [1] Adams R.A., Sobolev Spaces, Pure Appl. Math., 65, Academic Press, New York-London, 1975
- [2] Chen W., Zhou Y., Global nonexistence for a semilinear Petrovsky equation, Nonlinear Anal., 2009, 70(9), 3203–3208 http://dx.doi.org/10.1016/j.na.2008.04.024 Zbl1157.35324
- [3] Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 1994, 109(2), 295–308 http://dx.doi.org/10.1006/jdeq.1994.1051 Zbl0803.35092
- [4] Kirchhoff G., Vorlesungen über Mechanik, 3rd ed., Teubner, Leipzig, 1883
- [5] Levine H.A., Park S.R., Serrin J., Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, J. Math. Anal. Appl., 1998, 228(1), 181–205 http://dx.doi.org/10.1006/jmaa.1998.6126 Zbl0922.35094
- [6] Li F.C., Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation, Appl. Math. Lett., 2004, 17(12), 1409–1414 http://dx.doi.org/10.1016/j.am1.2003.07.014 Zbl1066.35062
- [7] Messaoudi S.A., Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 2002, 265(2), 296–308 http://dx.doi.org/10.1006/jmaa.2001.7697
- [8] Messaoudi S.A., Said Houari B., A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation, Appl. Math. Lett., 2007, 20(8), 866–871 http://dx.doi.org/10.1016/j.aml.2006.08.018 Zbl1132.35420
- [9] Ono K., On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 1997, 216(1), 321–342 http://dx.doi.org/10.1006/jmaa.1997.5697
- [10] Vitillaro E., Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 1999, 149(2), 155–182 http://dx.doi.org/10.1007/s002050050171 Zbl0934.35101
- [11] Wu S.T., Tsai L.Y., Blow-up of solutions for some non-linear wave equations of Kirchhoff type with some dissipation, Nonlinear Anal., 2006, 65(2), 243–264 http://dx.doi.org/10.1016/j.na.2004.11.023 Zbl1151.35052
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.