Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents

Aya Khaldi; Amar Ouaoua; Messaoud Maouni

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 4, page 471-484
  • ISSN: 0862-7959

Abstract

top
We consider a class of Kirchhoff type reaction-diffusion equations with variable exponents and source terms u t - M Ω | u | 2 d x Δ u + | u | m ( x ) - 2 u t = | u | r ( x ) - 2 u . We prove with suitable assumptions on the variable exponents r ( · ) , m ( · ) the global existence of the solution and a stability result using potential and Nihari’s functionals with small positive initial energy, the stability being based on Komornik’s inequality.

How to cite

top

Khaldi, Aya, Ouaoua, Amar, and Maouni, Messaoud. "Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents." Mathematica Bohemica 147.4 (2022): 471-484. <http://eudml.org/doc/298710>.

@article{Khaldi2022,
abstract = {We consider a class of Kirchhoff type reaction-diffusion equations with variable exponents and source terms \begin\{equation*\} u\_\{t\}-M\biggl (\int \_\Omega \vert \nabla u \vert ^\{2\} \{\rm d\}x\bigg ) \Delta u+ \vert u \vert ^\{m(x) -2\}u\_\{t\}= \vert u \vert ^\{r(x) -2\}u. \end\{equation*\} We prove with suitable assumptions on the variable exponents $r( \{\cdot \}),$$m(\{\cdot \})$ the global existence of the solution and a stability result using potential and Nihari’s functionals with small positive initial energy, the stability being based on Komornik’s inequality.},
author = {Khaldi, Aya, Ouaoua, Amar, Maouni, Messaoud},
journal = {Mathematica Bohemica},
keywords = {Kirchhoff equation; reaction-diffusion equation; variable exponent; global solution},
language = {eng},
number = {4},
pages = {471-484},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents},
url = {http://eudml.org/doc/298710},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Khaldi, Aya
AU - Ouaoua, Amar
AU - Maouni, Messaoud
TI - Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 4
SP - 471
EP - 484
AB - We consider a class of Kirchhoff type reaction-diffusion equations with variable exponents and source terms \begin{equation*} u_{t}-M\biggl (\int _\Omega \vert \nabla u \vert ^{2} {\rm d}x\bigg ) \Delta u+ \vert u \vert ^{m(x) -2}u_{t}= \vert u \vert ^{r(x) -2}u. \end{equation*} We prove with suitable assumptions on the variable exponents $r( {\cdot }),$$m({\cdot })$ the global existence of the solution and a stability result using potential and Nihari’s functionals with small positive initial energy, the stability being based on Komornik’s inequality.
LA - eng
KW - Kirchhoff equation; reaction-diffusion equation; variable exponent; global solution
UR - http://eudml.org/doc/298710
ER -

References

top
  1. Antontsev, S., Shmarev, S., 10.2991/978-94-6239-112-3, Atlantis Studies in Differential Equations 4. Springer, Berlin (2015). (2015) Zbl1410.35001MR3328376DOI10.2991/978-94-6239-112-3
  2. Benaissa, A., Messaoudi, S. A., 10.4064/cm94-1-8, Colloq. Math. 94 (2002), 103-109. (2002) Zbl1090.35122MR1930205DOI10.4064/cm94-1-8
  3. Chen, H., Liu, G., 10.1016/s0252-9602(12)60193-3, Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 41-58. (2013) Zbl1289.35202MR3003742DOI10.1016/s0252-9602(12)60193-3
  4. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  5. Fu, Y., Xiang, M., 10.1080/00036811.2015.1022153, Appl. Anal. 95 (2016), 524-544. (2016) Zbl1334.35079MR3440345DOI10.1080/00036811.2015.1022153
  6. Gao, Q., Li, F., Wang, Y., 10.2478/s11533-010-0096-2, Cent. Eur. J. Math. 9 (2011), 686-698. (2011) Zbl1233.35145MR2784038DOI10.2478/s11533-010-0096-2
  7. Ghegal, S., Hamchi, I., Messaoudi, S. A., 10.1080/00036811.2018.1530760, Appl. Anal. 99 (2020), 1333-1343. (2020) Zbl1439.35333MR4097821DOI10.1080/00036811.2018.1530760
  8. Ghisi, M., Gobbino, M., 10.1016/j.jde.2008.04.017, J. Differ. Equations 245 (2008), 2979-3007. (2008) Zbl1162.35008MR2454809DOI10.1016/j.jde.2008.04.017
  9. Han, Y., Li, Q., 10.1016/j.camwa.2018.01.047, Comput. Math. Appl. 75 (2018), 3283-3297. (2018) Zbl1409.35143MR3785559DOI10.1016/j.camwa.2018.01.047
  10. Jiang, Z., Zheng, S., Song, X., 10.1016/S0893-9659(04)90032-8, Appl. Math. Lett. 17 (2004), 193-199. (2004) Zbl1056.35087MR2034767DOI10.1016/S0893-9659(04)90032-8
  11. Kirchhoff, G., Vorlesungen über mathematische Physik. 1. Band: Mechanik, Teubner, Leipzig (1883), German. (1883) 
  12. Komornik, V., Exact Controllability and Stabilization: The Multiplier Method, Research in Applied Mathematics 36. Wiley, Chichester (1994). (1994) Zbl0937.93003MR1359765
  13. Levine, H. A., 10.1090/S0002-9947-1974-0344697-2, Trans. Am. Math. Soc. 192 (1974), 1-21. (1974) Zbl0288.35003MR0344697DOI10.1090/S0002-9947-1974-0344697-2
  14. Levine, H. A., 10.1137/0505015, SIAM J. Math. Anal. 5 (1974), 138-146. (1974) Zbl0243.35069MR0399682DOI10.1137/0505015
  15. Li, H., 10.1007/s10883-019-09463-4, J. Dyn. Control Syst. 26 (2020), 383-392. (2020) Zbl1445.35206MR4068420DOI10.1007/s10883-019-09463-4
  16. Li, J., Han, Y., 10.3846/mma.2019.014, Math. Model. Anal. 24 (2019), 195-217. (2019) Zbl07394651MR3917481DOI10.3846/mma.2019.014
  17. Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Gauthier-Villars, Paris (1969), French. (1969) Zbl0189.40603MR0259693
  18. Messaoudi, S. A., Talahmeh, A. A., 10.1002/mma.4505, Math. Methods Appl. Sci. 40 (2017), 6976-6986. (2017) Zbl1397.35042MR3742108DOI10.1002/mma.4505
  19. Messaoudi, S. A., Talahmeh, A. A., 10.1007/s11565-019-00326-1, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65 (2019), 311-326. (2019) Zbl1429.35036MR4026426DOI10.1007/s11565-019-00326-1
  20. Messaoudi, S. A., Talahmeh, A. A., Al-Smail, J. H., 10.1016/j.camwa.2017.07.048, Comput. Math. Appl. 74 (2017), 3024-3041. (2017) Zbl1415.35061MR3725935DOI10.1016/j.camwa.2017.07.048
  21. Ono, K., 10.1006/jdeq.1997.3263, J. Differ. Equations 137 (1997), 273-301. (1997) Zbl0879.35110MR1456598DOI10.1006/jdeq.1997.3263
  22. Ouaoua, A., Maouni, M., 10.28924/2291-8639-17-2019-620, Int. J. Anal. Appl. 17 (2019), 620-629. (2019) Zbl1438.35226DOI10.28924/2291-8639-17-2019-620
  23. Polat, N., Blow up of solution for a nonlinear reaction diffusion equation with multiple nonlinearities, Int. J. Sci. Technol. 2 (2007), 123-128. (2007) MR2372361
  24. Vitillaro, E., 10.1007/s002050050171, Arch. Ration. Mech. Anal. 149 (1999), 155-182. (1999) Zbl0934.35101MR1719145DOI10.1007/s002050050171
  25. Wu, S. T., Tsai, L.-Y., 10.1016/j.na.2004.11.023, Nonlinear Anal., Theory Methods Appl., Ser. A 65 (2006), 243-264. (2006) Zbl1151.35052MR2228427DOI10.1016/j.na.2004.11.023
  26. Zheng, S., 10.1201/9780203492222, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 133. Chapman & Hall/CRC, Boca Raton (2004). (2004) Zbl1085.47058MR2088362DOI10.1201/9780203492222

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.