Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents
Aya Khaldi; Amar Ouaoua; Messaoud Maouni
Mathematica Bohemica (2022)
- Volume: 147, Issue: 4, page 471-484
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKhaldi, Aya, Ouaoua, Amar, and Maouni, Messaoud. "Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents." Mathematica Bohemica 147.4 (2022): 471-484. <http://eudml.org/doc/298710>.
@article{Khaldi2022,
abstract = {We consider a class of Kirchhoff type reaction-diffusion equations with variable exponents and source terms \begin\{equation*\} u\_\{t\}-M\biggl (\int \_\Omega \vert \nabla u \vert ^\{2\} \{\rm d\}x\bigg ) \Delta u+ \vert u \vert ^\{m(x) -2\}u\_\{t\}= \vert u \vert ^\{r(x) -2\}u. \end\{equation*\}
We prove with suitable assumptions on the variable exponents $r( \{\cdot \}),$$m(\{\cdot \})$ the global existence of the solution and a stability result using potential and Nihari’s functionals with small positive initial energy, the stability being based on Komornik’s inequality.},
author = {Khaldi, Aya, Ouaoua, Amar, Maouni, Messaoud},
journal = {Mathematica Bohemica},
keywords = {Kirchhoff equation; reaction-diffusion equation; variable exponent; global solution},
language = {eng},
number = {4},
pages = {471-484},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents},
url = {http://eudml.org/doc/298710},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Khaldi, Aya
AU - Ouaoua, Amar
AU - Maouni, Messaoud
TI - Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 4
SP - 471
EP - 484
AB - We consider a class of Kirchhoff type reaction-diffusion equations with variable exponents and source terms \begin{equation*} u_{t}-M\biggl (\int _\Omega \vert \nabla u \vert ^{2} {\rm d}x\bigg ) \Delta u+ \vert u \vert ^{m(x) -2}u_{t}= \vert u \vert ^{r(x) -2}u. \end{equation*}
We prove with suitable assumptions on the variable exponents $r( {\cdot }),$$m({\cdot })$ the global existence of the solution and a stability result using potential and Nihari’s functionals with small positive initial energy, the stability being based on Komornik’s inequality.
LA - eng
KW - Kirchhoff equation; reaction-diffusion equation; variable exponent; global solution
UR - http://eudml.org/doc/298710
ER -
References
top- Antontsev, S., Shmarev, S., 10.2991/978-94-6239-112-3, Atlantis Studies in Differential Equations 4. Springer, Berlin (2015). (2015) Zbl1410.35001MR3328376DOI10.2991/978-94-6239-112-3
- Benaissa, A., Messaoudi, S. A., 10.4064/cm94-1-8, Colloq. Math. 94 (2002), 103-109. (2002) Zbl1090.35122MR1930205DOI10.4064/cm94-1-8
- Chen, H., Liu, G., 10.1016/s0252-9602(12)60193-3, Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 41-58. (2013) Zbl1289.35202MR3003742DOI10.1016/s0252-9602(12)60193-3
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
- Fu, Y., Xiang, M., 10.1080/00036811.2015.1022153, Appl. Anal. 95 (2016), 524-544. (2016) Zbl1334.35079MR3440345DOI10.1080/00036811.2015.1022153
- Gao, Q., Li, F., Wang, Y., 10.2478/s11533-010-0096-2, Cent. Eur. J. Math. 9 (2011), 686-698. (2011) Zbl1233.35145MR2784038DOI10.2478/s11533-010-0096-2
- Ghegal, S., Hamchi, I., Messaoudi, S. A., 10.1080/00036811.2018.1530760, Appl. Anal. 99 (2020), 1333-1343. (2020) Zbl1439.35333MR4097821DOI10.1080/00036811.2018.1530760
- Ghisi, M., Gobbino, M., 10.1016/j.jde.2008.04.017, J. Differ. Equations 245 (2008), 2979-3007. (2008) Zbl1162.35008MR2454809DOI10.1016/j.jde.2008.04.017
- Han, Y., Li, Q., 10.1016/j.camwa.2018.01.047, Comput. Math. Appl. 75 (2018), 3283-3297. (2018) Zbl1409.35143MR3785559DOI10.1016/j.camwa.2018.01.047
- Jiang, Z., Zheng, S., Song, X., 10.1016/S0893-9659(04)90032-8, Appl. Math. Lett. 17 (2004), 193-199. (2004) Zbl1056.35087MR2034767DOI10.1016/S0893-9659(04)90032-8
- Kirchhoff, G., Vorlesungen über mathematische Physik. 1. Band: Mechanik, Teubner, Leipzig (1883), German. (1883)
- Komornik, V., Exact Controllability and Stabilization: The Multiplier Method, Research in Applied Mathematics 36. Wiley, Chichester (1994). (1994) Zbl0937.93003MR1359765
- Levine, H. A., 10.1090/S0002-9947-1974-0344697-2, Trans. Am. Math. Soc. 192 (1974), 1-21. (1974) Zbl0288.35003MR0344697DOI10.1090/S0002-9947-1974-0344697-2
- Levine, H. A., 10.1137/0505015, SIAM J. Math. Anal. 5 (1974), 138-146. (1974) Zbl0243.35069MR0399682DOI10.1137/0505015
- Li, H., 10.1007/s10883-019-09463-4, J. Dyn. Control Syst. 26 (2020), 383-392. (2020) Zbl1445.35206MR4068420DOI10.1007/s10883-019-09463-4
- Li, J., Han, Y., 10.3846/mma.2019.014, Math. Model. Anal. 24 (2019), 195-217. (2019) Zbl07394651MR3917481DOI10.3846/mma.2019.014
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Gauthier-Villars, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Messaoudi, S. A., Talahmeh, A. A., 10.1002/mma.4505, Math. Methods Appl. Sci. 40 (2017), 6976-6986. (2017) Zbl1397.35042MR3742108DOI10.1002/mma.4505
- Messaoudi, S. A., Talahmeh, A. A., 10.1007/s11565-019-00326-1, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65 (2019), 311-326. (2019) Zbl1429.35036MR4026426DOI10.1007/s11565-019-00326-1
- Messaoudi, S. A., Talahmeh, A. A., Al-Smail, J. H., 10.1016/j.camwa.2017.07.048, Comput. Math. Appl. 74 (2017), 3024-3041. (2017) Zbl1415.35061MR3725935DOI10.1016/j.camwa.2017.07.048
- Ono, K., 10.1006/jdeq.1997.3263, J. Differ. Equations 137 (1997), 273-301. (1997) Zbl0879.35110MR1456598DOI10.1006/jdeq.1997.3263
- Ouaoua, A., Maouni, M., 10.28924/2291-8639-17-2019-620, Int. J. Anal. Appl. 17 (2019), 620-629. (2019) Zbl1438.35226DOI10.28924/2291-8639-17-2019-620
- Polat, N., Blow up of solution for a nonlinear reaction diffusion equation with multiple nonlinearities, Int. J. Sci. Technol. 2 (2007), 123-128. (2007) MR2372361
- Vitillaro, E., 10.1007/s002050050171, Arch. Ration. Mech. Anal. 149 (1999), 155-182. (1999) Zbl0934.35101MR1719145DOI10.1007/s002050050171
- Wu, S. T., Tsai, L.-Y., 10.1016/j.na.2004.11.023, Nonlinear Anal., Theory Methods Appl., Ser. A 65 (2006), 243-264. (2006) Zbl1151.35052MR2228427DOI10.1016/j.na.2004.11.023
- Zheng, S., 10.1201/9780203492222, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 133. Chapman & Hall/CRC, Boca Raton (2004). (2004) Zbl1085.47058MR2088362DOI10.1201/9780203492222
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.