An accurate approximation of zeta-generalized-Euler-constant functions
Open Mathematics (2010)
- Volume: 8, Issue: 3, page 488-499
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Abramowitz M., Stegun I. A., Handbook of Mathematical Functions, 9th ed., Dover Publications, N.Y., 1972 Zbl0543.33001
- [2] Lampret V., The Euler-Maclaurin and Taylor Formulas: Twin, Elementary Derivations, Math. Mag., 2001, 74, 109–122 Zbl1018.41020
- [3] Lampret V., Constructing the Euler-Maclaurin formula - celebrating Euler’s 300th birthday, Int. J. Math. Stat., 2007, 1, 60–85 Zbl1132.65002
- [4] Lampret V., Approximating real Pochhammer products: A comparison with powers, Cent. Eur. J. Math., 2009, 7, 493–505 http://dx.doi.org/10.2478/s11533-009-0036-1 Zbl1179.41034
- [5] Sîntămărian A., A generalization of Euler’s constant, Numer. Algorithms, 2007, 46, 141–151 http://dx.doi.org/10.1007/s11075-007-9132-0 Zbl1130.11075
- [6] Sîntămărian A., Some inequalities regarding a generalization of Euler’s constant, J. Inequal. Pure Appl. Math., 2008, 9(2), 46 Zbl1195.11168
- [7] Sondow J., Double integrals for Euler’s constant and ln and an analog of Hadjicosta’s formula, Amer. Math. Monthly, 2005, 112, 61–65 http://dx.doi.org/10.2307/30037385 Zbl1138.11356
- [8] Sondow J., Hadjicostas P., The generalized-Euler-constant function γ(z) and a generalization of Somos’s quadratic recurrence constant, J. Math. Anal. Appl., 2007, 332, 292–314 http://dx.doi.org/10.1016/j.jmaa.2006.09.081 Zbl1113.11017
- [9] Wolfram S., Mathematica, Version 6.0, Wolfram Research, Inc., 1988–2008