Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3

Joanna Janczewska; Jakub Maksymiuk

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 1920-1927
  • ISSN: 2391-5455

Abstract

top
We consider a conservative second order Hamiltonian system q ¨ + V ( q ) = 0 in ℝ3 with a potential V having a global maximum at the origin and a line l ∩ 0 = ϑ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.

How to cite

top

Joanna Janczewska, and Jakub Maksymiuk. "Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3." Open Mathematics 10.6 (2012): 1920-1927. <http://eudml.org/doc/269612>.

@article{JoannaJanczewska2012,
abstract = {We consider a conservative second order Hamiltonian system \[\ddot\{q\} + \nabla V(q) = 0\] in ℝ3 with a potential V having a global maximum at the origin and a line l ∩ 0 = ϑ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.},
author = {Joanna Janczewska, Jakub Maksymiuk},
journal = {Open Mathematics},
keywords = {Homoclinic orbit; Rotation number; Strong force; homoclinic orbit; rotation number; strong force},
language = {eng},
number = {6},
pages = {1920-1927},
title = {Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3},
url = {http://eudml.org/doc/269612},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Joanna Janczewska
AU - Jakub Maksymiuk
TI - Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 1920
EP - 1927
AB - We consider a conservative second order Hamiltonian system \[\ddot{q} + \nabla V(q) = 0\] in ℝ3 with a potential V having a global maximum at the origin and a line l ∩ 0 = ϑ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.
LA - eng
KW - Homoclinic orbit; Rotation number; Strong force; homoclinic orbit; rotation number; strong force
UR - http://eudml.org/doc/269612
ER -

References

top
  1. [1] Bertotti M.L., Jeanjean L., Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 1996, 126(6), 1169–1180 http://dx.doi.org/10.1017/S0308210500023349[Crossref] Zbl0868.34001
  2. [2] Bolotin S., Variational criteria for nonintegrability and chaos in Hamiltonian systems, In: Hamiltonian Mechanics, Torun, 28 June–2 July, 1993, NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, 1994, 173–179 
  3. [3] Borges M.J., Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 2006, 17(1), 1–32 http://dx.doi.org/10.1017/S0956792506006516[Crossref] Zbl1160.37390
  4. [4] Caldiroli P., Jeanjean L., Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 1997, 136(1), 76–114 http://dx.doi.org/10.1006/jdeq.1996.3230[Crossref] Zbl0887.34044
  5. [5] Caldiroli P., Nolasco M., Multiple homoclinic solutions for a class of autonomous singular systems in ℝ2, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1998, 15(1), 113–125 http://dx.doi.org/10.1016/S0294-1449(99)80022-5[Crossref] Zbl0907.58014
  6. [6] Gordon W.B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 1975, 204, 113–135 http://dx.doi.org/10.1090/S0002-9947-1975-0377983-1[Crossref] Zbl0276.58005
  7. [7] Izydorek M., Janczewska J., Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 2005, 219(2), 375–389 http://dx.doi.org/10.1016/j.jde.2005.06.029[Crossref] Zbl1080.37067
  8. [8] Izydorek M., Janczewska J., Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 2007, 238(2), 381–393 http://dx.doi.org/10.1016/j.jde.2007.03.013[Crossref] Zbl1117.37033
  9. [9] Janczewska J., The existence and multiplicity of heteroclinic and homoclinic orbits for a class of singular Hamiltonian systems in ℝ2, Boll. Unione Mat. Ital., 2010, 3(3), 471–491 Zbl1214.37049
  10. [10] Rabinowitz P.H., Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1989, 6(5), 331–346 Zbl0701.58023
  11. [11] Rabinowitz P.H., Homoclinics for an almost periodically forced singular Hamiltonian system, Topol. Methods Nonlinear Anal., 1995, 6(1), 49–66 Zbl0857.34049
  12. [12] Rabinowitz P.H., Multibump solutions for an almost periodically forced singular Hamiltonian system, Electron. J. Differential Equations, 1995, #12 Zbl0828.34034
  13. [13] Rabinowitz P.H., Homoclinics for a singular Hamiltonian system, In: Geometric Analysis and the Calculus of Variations, International Press, Cambridge, 1996, 267–296 Zbl0936.37035
  14. [14] Tanaka K., Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1990, 7(5), 427–438 Zbl0712.58026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.