Multiple homoclinic solutions for a class of autonomous singular systems in R2
Paolo Caldiroli; Margherita Nolasco
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 1, page 113-125
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCaldiroli, Paolo, and Nolasco, Margherita. "Multiple homoclinic solutions for a class of autonomous singular systems in R2." Annales de l'I.H.P. Analyse non linéaire 15.1 (1998): 113-125. <http://eudml.org/doc/78429>.
@article{Caldiroli1998,
author = {Caldiroli, Paolo, Nolasco, Margherita},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamiltonian system; homoclinic orbit; unstable equilibrium point; concentration-compactness; Ekeland principle},
language = {eng},
number = {1},
pages = {113-125},
publisher = {Gauthier-Villars},
title = {Multiple homoclinic solutions for a class of autonomous singular systems in R2},
url = {http://eudml.org/doc/78429},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Caldiroli, Paolo
AU - Nolasco, Margherita
TI - Multiple homoclinic solutions for a class of autonomous singular systems in R2
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 1
SP - 113
EP - 125
LA - eng
KW - Hamiltonian system; homoclinic orbit; unstable equilibrium point; concentration-compactness; Ekeland principle
UR - http://eudml.org/doc/78429
ER -
References
top- [AB] A. Ambrosetti and M.L. Bertotti, Homoclinics for second order conservative systems, in Partial Differential Equations and Related Subjects, ed. M. Miranda, Pitman Research Notes in Math. Ser. (London, Pitman Press), 1992. Zbl0804.34046MR1190931
- [ACZ] A. Ambrosetti and V. Coti Zelati, Multiple Homoclinic Orbits for a Class of Conservative Systems, Rend. Sem. Mat. Univ. Padova, Vol. 89, 1993, pp. 177-194. Zbl0806.58018MR1229052
- [BC] A. Bahri and J.M. Coron, On a Nonlinear Elliptic Equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. Zbl0649.35033MR929280
- [BG] V. Benci and F. Giannoni, Homoclinic orbits on compact manifolds, J. Math. Anal. Appl., Vol. 157, 1991, pp. 568-576. Zbl0737.58052MR1112335
- [Be] U. Bessi, Multiple homoclinic orbits for autonomous singular potentials, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 124, 1994, pp. 785-802. Zbl0812.58088MR1298592
- [B] S.V. Bolotin, Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat. Mekh., Vol. 6, 1980, pp. 98-103. Zbl0549.58019MR728558
- [BS] B. Buffoni and E. Séré, A global condition for quasi random behavior in a class of conservative systems, Vol. XLIX, 1996, pp. 285-305. Zbl0860.58027MR1374173
- [C] P. Caldiroli, Existence and multiplicity of homoclinic orbits for potentials on unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 124, 1994, pp. 317-339. Zbl0807.34058MR1273751
- [CZES] V. CotiZELATI, I. EKELAND and E. SÉRÉ, A Variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 288, 1990, pp. 133-160. Zbl0731.34050MR1070929
- [CZR] V. Coti Zelati and P.H. Rabinowitz, Homoclinic orbits for second order hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., Vol. 4, 1991, pp. 693-727. Zbl0744.34045MR1119200
- [G] W.B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., Vol. 204, 1975, pp. 113-135. Zbl0276.58005MR377983
- [J] L. Jeanjean, Existence of connecting orbits in a potential well, Dyn. Sys. Appl., Vol. 3, 1994, pp. 537-562. Zbl0817.34029MR1304132
- [L] P.L. Lions, The concentration-compactness principle in the calculus of variations, Rev. Mat. Iberoamericana, Vol. 1, 1985, pp. 145-201. Zbl0704.49005MR834360
- [R] P.H. Rabinowitz, Homoclinics for a singular Hamiltonian system in R2, Proceedings of the Workshop "Variational and Local Methods in the Study of Hamiltonian Systems", ICTP (A. Ambrosetti and G. F. Dell' Antonio, eds.), World Scientific, 1995. Zbl0951.37015MR1449412
- [R2] P.H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré. Anal. Non Linéaire, Vol. 6, 1989, pp. 331-346. Zbl0701.58023MR1030854
- [RT] P.H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., Vol. 206, 1991, pp. 473-479. Zbl0707.58022MR1095767
- [S] E. Séré, Homoclinic orbits on compact hypersurfaces in R2N of restricted contact type, Comm. Math. Phys., Vol. 172, 1995, pp. 293-316. Zbl0840.34046MR1350410
- [T] K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré. Anal. Non Linéaire, Vol. 7, 1990, pp. 427-438. Zbl0712.58026MR1138531
- [T2] K. Tanaka, A note on the existence of multiple homoclinic orbits for a perturbed radial potential, Nonlinear Diff. Eq. Appl., Vol. 1, 1994, pp. 149-162. Zbl0819.34032MR1273347
Citations in EuDML Documents
top- Marek Izydorek, Joanna Janczewska, The shadowing chain lemma for singular Hamiltonian systems involving strong forces
- Joanna Janczewska, The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in
- Joanna Janczewska, Jakub Maksymiuk, Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.