Harmonic interpolation based on Radon projections along the sides of regular polygons

Irina Georgieva; Clemens Hofreither; Christoph Koutschan; Veronika Pillwein; Thotsaporn Thanatipanonda

Open Mathematics (2013)

  • Volume: 11, Issue: 4, page 609-620
  • ISSN: 2391-5455

Abstract

top
Given information about a harmonic function in two variables, consisting of a finite number of values of its Radon projections, i.e., integrals along some chords of the unit circle, we study the problem of interpolating these data by a harmonic polynomial. With the help of symbolic summation techniques we show that this interpolation problem has a unique solution in the case when the chords form a regular polygon. Numerical experiments for this and more general cases are presented.

How to cite

top

Irina Georgieva, et al. "Harmonic interpolation based on Radon projections along the sides of regular polygons." Open Mathematics 11.4 (2013): 609-620. <http://eudml.org/doc/269634>.

@article{IrinaGeorgieva2013,
abstract = {Given information about a harmonic function in two variables, consisting of a finite number of values of its Radon projections, i.e., integrals along some chords of the unit circle, we study the problem of interpolating these data by a harmonic polynomial. With the help of symbolic summation techniques we show that this interpolation problem has a unique solution in the case when the chords form a regular polygon. Numerical experiments for this and more general cases are presented.},
author = {Irina Georgieva, Clemens Hofreither, Christoph Koutschan, Veronika Pillwein, Thotsaporn Thanatipanonda},
journal = {Open Mathematics},
keywords = {Harmonic interpolation; Harmonic polynomials; Radon projections; Computer tomography; Symbolic computation; harmonic interpolation; harmonic polynomials; computer tomography; symbolic computation},
language = {eng},
number = {4},
pages = {609-620},
title = {Harmonic interpolation based on Radon projections along the sides of regular polygons},
url = {http://eudml.org/doc/269634},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Irina Georgieva
AU - Clemens Hofreither
AU - Christoph Koutschan
AU - Veronika Pillwein
AU - Thotsaporn Thanatipanonda
TI - Harmonic interpolation based on Radon projections along the sides of regular polygons
JO - Open Mathematics
PY - 2013
VL - 11
IS - 4
SP - 609
EP - 620
AB - Given information about a harmonic function in two variables, consisting of a finite number of values of its Radon projections, i.e., integrals along some chords of the unit circle, we study the problem of interpolating these data by a harmonic polynomial. With the help of symbolic summation techniques we show that this interpolation problem has a unique solution in the case when the chords form a regular polygon. Numerical experiments for this and more general cases are presented.
LA - eng
KW - Harmonic interpolation; Harmonic polynomials; Radon projections; Computer tomography; Symbolic computation; harmonic interpolation; harmonic polynomials; computer tomography; symbolic computation
UR - http://eudml.org/doc/269634
ER -

References

top
  1. [1] Bojanov B., Draganova C., Surface approximation by piece-wise harmonic functions, In: Algorithms for Approximation V, University College, Chester, 2005, available at http://roar.uel.ac.uk/618 
  2. [2] Bojanov B., Georgieva I., Interpolation by bivariate polynomials based on Radon projections, Studia Math., 2004, 162(2), 141–160 http://dx.doi.org/10.4064/sm162-2-3 Zbl1060.41003
  3. [3] Bojanov B., Petrova G., Numerical integration over a disc. A new Gaussian quadrature formula, Numer. Math., 1998, 80(1), 39–59 http://dx.doi.org/10.1007/s002110050358 Zbl0911.65015
  4. [4] Bojanov B., Petrova G., Uniqueness of the Gaussian quadrature for a ball, J. Approx. Theory, 2000, 104(1), 21–44 http://dx.doi.org/10.1006/jath.1999.3442 Zbl0979.41020
  5. [5] Bojanov B., Xu Y., Reconstruction of a polynomial from its Radon projections, SIAM J. Math. Anal., 2005, 37(1), 238–250 http://dx.doi.org/10.1137/040616516 Zbl1127.42011
  6. [6] Cavaretta A.S. Jr., Micchelli C.A., Sharma A., Multivariate interpolation and the Radon transform, Math. Z., 1980, 174(3), 263–279 http://dx.doi.org/10.1007/BF01161414 Zbl0425.46054
  7. [7] Cavaretta A.S. Jr., Micchelli C.A., Sharma A., Multivariate interpolation and the Radon transform. II. Some further examples, In: Quantitive Approximation, Bonn, August 20–24, 1979, Academic Press, New York-London, 1980, 49–62 
  8. [8] Davison M.E., Grünbaum F.A., Tomographic reconstruction with arbitrary directions, Comm. Pure Appl. Math., 1981, 34(1), 77–119 http://dx.doi.org/10.1002/cpa.3160340105 Zbl0441.93031
  9. [9] Georgieva I., Hofreither C., Uluchev R., Interpolation of mixed type data by bivariate polynomials, In: Constructive Theory of Functions, Sozopol, June 3–10, 2010, Marin Drinov Academic Publishing House, Sofia, 2012, 93–107 
  10. [10] Georgieva I., Ismail S., On recovering of a bivariate polynomial from its Radon projections, In: Constructive Theory of Functions, Varna, June 1–7, 2005, Marin Drinov Academic Publishing House, Sofia, 2006, 127–134 
  11. [11] Georgieva I., Uluchev R., Smoothing of Radon projections type of data by bivariate polynomials, J. Comput. Appl. Math., 2008, 215(1), 167–181 http://dx.doi.org/10.1016/j.cam.2007.04.002 Zbl1144.65080
  12. [12] Georgieva I., Uluchev R., Surface reconstruction and Lagrange basis polynomials, In: Large-Scale Scientific Computing, Sozopol, June 5–9, 2007, Lecture Notes in Comput. Sci., 4818, Springer, Berlin, 2008, 670–678 http://dx.doi.org/10.1007/978-3-540-78827-0_77 
  13. [13] Georgieva I., Uluchev R., On interpolation in the unit disk based on both Radon projections and function values, In: Large-Scale Scientific Computing, Sozopol, June 4–8, 2009, Lecture Notes in Comput. Sci., 5910, Springer, Berlin, 2010, 747–755 http://dx.doi.org/10.1007/978-3-642-12535-5_89 
  14. [14] Hakopian H., Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type, J. Approx. Theory, 1982, 34(3), 286–305 http://dx.doi.org/10.1016/0021-9045(82)90019-3 Zbl0523.41001
  15. [15] Hamaker C., Solmon D.C., The angles between the null spaces of X-rays, J. Math. Anal. Appl., 1978, 62(1), 1–23 http://dx.doi.org/10.1016/0022-247X(78)90214-7 Zbl0437.45025
  16. [16] Jain A.K., Fundamentals of Digital Image Processing, Prentice Hall Inform. System Sci. Ser., Prentice Hall, Englewood Cliffs, 1989 Zbl0744.68134
  17. [17] Koutschan C., Advanced Applications of the Holonomic Systems Approach, PhD thesis, RISC, Johannes Kepler University, Linz, 2009 
  18. [18] Koutschan C., HolonomicFunctions, available at http://www.risc.uni-linz.ac.at/research/combinat/software/HolonomicFunctions/ 
  19. [19] Logan B.F., Shepp L.A., Optimal reconstruction of a function from its projections, Duke Math. J., 1975, 42(4), 645–659 http://dx.doi.org/10.1215/S0012-7094-75-04256-8 Zbl0343.41020
  20. [20] Marr R.B., On the reconstruction of a function on a circular domain from a sampling of its line integrals, J. Math. Anal. Appl., 1974, 45(2), 357–374 http://dx.doi.org/10.1016/0022-247X(74)90078-X 
  21. [21] Natterer F., The Mathematics of Computerized Tomography, Classics Appl. Math., 32, SIAM, Philadelphia, 2001 Zbl0973.92020
  22. [22] Nikolov G., Cubature formulae for the disk using Radon projections, East J. Approx., 2008, 14(4), 401–410 Zbl1217.41033
  23. [23] Petkovšek M., Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symbolic Comput., 1992, 14(2–3), 243–264 http://dx.doi.org/10.1016/0747-7171(92)90038-6 Zbl0761.11008
  24. [24] Radon J., Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Berichte über die Verhandlungen der Sächsische Akademie der Wissenschaften zu Leipzig, 1917, 69, 262–277 Zbl46.0436.02
  25. [25] Zeilberger D., A holonomic systems approach to special functions identities, J. Comput. Appl. Math., 1990, 32(3), 321–368 http://dx.doi.org/10.1016/0377-0427(90)90042-X 
  26. [26] Zeilberger D., The method of creative telescoping, J. Symbolic Comput., 1991, 11(3), 195–204 http://dx.doi.org/10.1016/S0747-7171(08)80044-2 Zbl0738.33002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.