Harmonic interpolation in Fejér points with the Faber polynomials as a basis.
J.H. Curtiss (1964/65)
Mathematische Zeitschrift
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
J.H. Curtiss (1964/65)
Mathematische Zeitschrift
Similarity:
Crainic, Nicolae (2003)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
Stephen Semmes (1988)
Revista Matemática Iberoamericana
Similarity:
In recent years the study of interpolation of Banach spaces has seen some unexpected interactions with other fields. (...) In this paper I shall discuss some more interactions of interpolation theory with the rest of mathematics, beginning with some joint work with Coifman [CS]. Our basic idea was to look for the methods of interpolation that had interesting PDE's arising as examples.
Newman, D.J., Rubel, L.A. (1979)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Jesús Miguel Carnicer, Mariano Gasca (2002)
RACSAM
Similarity:
Un retículo natural es el conjunto de todas las intersecciones de un conjunto de rectas del plano en posición general. El problema de interpolación de Lagrange sobre un retículo natural de n + 2 rectas tiene solución única en el espacio de los polinomios bivariados de grado menor o igual que n. Un retículo natural generalizado está formado por todas las intersecciones de un conjunto de rectas distintas, sin excluir paralelismos o concurrencias múltiples. A un retículo natural generalizado...
S. Saitoh (1985)
Matematički Vesnik
Similarity:
Ewa Ligocka (1992)
Studia Mathematica
Similarity:
Shigeru Haruki (1977)
Annales Polonici Mathematici
Similarity:
Palacios, Francisco, Rubió, Pere (2003)
Applied Mathematics E-Notes [electronic only]
Similarity:
Crainic, Nicolae (2004)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
Mingxia Li, Shipeng Mao (2013)
Open Mathematics
Similarity:
We prove anisotropic interpolation error estimates for quadrilateral and hexahedral elements with all possible shape function spaces, which cover the intermediate families, tensor product families and serendipity families. Moreover, we show that the anisotropic interpolation error estimates hold for derivatives of any order. This goal is accomplished by investigating an interpolation defined via orthogonal expansions.