On the homotopy equivalence of the spaces of proper and local maps

Piotr Bartłomiejczyk; Piotr Nowak-Przygodzki

Open Mathematics (2014)

  • Volume: 12, Issue: 9, page 1330-1336
  • ISSN: 2391-5455

Abstract

top
We prove that for n > 1 the space of proper maps P 0(n, k) and the space of local maps F 0(n, k) are not homotopy equivalent.

How to cite

top

Piotr Bartłomiejczyk, and Piotr Nowak-Przygodzki. "On the homotopy equivalence of the spaces of proper and local maps." Open Mathematics 12.9 (2014): 1330-1336. <http://eudml.org/doc/269635>.

@article{PiotrBartłomiejczyk2014,
abstract = {We prove that for n > 1 the space of proper maps P 0(n, k) and the space of local maps F 0(n, k) are not homotopy equivalent.},
author = {Piotr Bartłomiejczyk, Piotr Nowak-Przygodzki},
journal = {Open Mathematics},
keywords = {Proper map; Local map; Homotopy equivalence; proper map; local map; homotopy equivalence; contractible},
language = {eng},
number = {9},
pages = {1330-1336},
title = {On the homotopy equivalence of the spaces of proper and local maps},
url = {http://eudml.org/doc/269635},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Piotr Bartłomiejczyk
AU - Piotr Nowak-Przygodzki
TI - On the homotopy equivalence of the spaces of proper and local maps
JO - Open Mathematics
PY - 2014
VL - 12
IS - 9
SP - 1330
EP - 1336
AB - We prove that for n > 1 the space of proper maps P 0(n, k) and the space of local maps F 0(n, k) are not homotopy equivalent.
LA - eng
KW - Proper map; Local map; Homotopy equivalence; proper map; local map; homotopy equivalence; contractible
UR - http://eudml.org/doc/269635
ER -

References

top
  1. [1] Abd-Allah A.M., Brown R., A compact-open topology on partial maps with open domain, J. London Math. Soc., 1980, 21(3), 480–486 http://dx.doi.org/10.1112/jlms/s2-21.3.480 Zbl0436.54012
  2. [2] Bartłomiejczyk P., Geba K., Izydorek M., Otopy classes of equivariant maps, J. Fixed Point Theory Appl., 2010, 7(1), 145–160 http://dx.doi.org/10.1007/s11784-010-0013-0 Zbl1205.55008
  3. [3] Bartłomiejczyk P., Nowak-Przygodzki P., Gradient otopies of gradient local maps, Fund. Math., 2011, 214(1), 89–100 http://dx.doi.org/10.4064/fm214-1-6 Zbl1229.55003
  4. [4] Bartłomiejczyk P., Nowak-Przygodzki P., Proper gradient otopies, Topology Appl., 2012, 159(10–11), 2570–2579 http://dx.doi.org/10.1016/j.topol.2012.04.014 Zbl1247.55002
  5. [5] Bartłomiejczyk P., Nowak-Przygodzki P., The exponential law for partial, local and proper maps and its application to otopy theory, Commun. Contemp. Math. (in press), DOI: 10.1142/S0219199714500059 Zbl1303.55003
  6. [6] Becker J.C., Gottlieb D.H., Vector fields and transfers, Manuscripta Math., 1991, 72(2), 111–130 http://dx.doi.org/10.1007/BF02568269 Zbl0736.55012
  7. [7] Becker J.C., Gottlieb D.H., Spaces of local vector fields, In: Higher Homotopy Structures in Topology and Mathematical Physics, Contemp. Math., 227, American Mathematical Society, Providence, 1999, 21–28 http://dx.doi.org/10.1090/conm/227/03250 
  8. [8] Cohen F.R., Fibration and product decompositions in nonstable homotopy theory, In: Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, 1175–1208 http://dx.doi.org/10.1016/B978-044481779-2/50025-0 Zbl0871.55008
  9. [9] Dancer E.N., Geba K., Rybicki S.M., Classification of homotopy classes of equivariant gradient maps, Fund. Math., 2005, 185(1), 1–18 http://dx.doi.org/10.4064/fm185-1-1 Zbl1086.47031
  10. [10] Serre J.-P., Homologie singulière des espaces fibrés, Applications, Ann. of Math., 1951, 54(3), 425–505 http://dx.doi.org/10.2307/1969485 Zbl0045.26003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.