On the homotopy equivalence of the spaces of proper and local maps
Piotr Bartłomiejczyk; Piotr Nowak-Przygodzki
Open Mathematics (2014)
- Volume: 12, Issue: 9, page 1330-1336
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topPiotr Bartłomiejczyk, and Piotr Nowak-Przygodzki. "On the homotopy equivalence of the spaces of proper and local maps." Open Mathematics 12.9 (2014): 1330-1336. <http://eudml.org/doc/269635>.
@article{PiotrBartłomiejczyk2014,
abstract = {We prove that for n > 1 the space of proper maps P 0(n, k) and the space of local maps F 0(n, k) are not homotopy equivalent.},
author = {Piotr Bartłomiejczyk, Piotr Nowak-Przygodzki},
journal = {Open Mathematics},
keywords = {Proper map; Local map; Homotopy equivalence; proper map; local map; homotopy equivalence; contractible},
language = {eng},
number = {9},
pages = {1330-1336},
title = {On the homotopy equivalence of the spaces of proper and local maps},
url = {http://eudml.org/doc/269635},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Piotr Bartłomiejczyk
AU - Piotr Nowak-Przygodzki
TI - On the homotopy equivalence of the spaces of proper and local maps
JO - Open Mathematics
PY - 2014
VL - 12
IS - 9
SP - 1330
EP - 1336
AB - We prove that for n > 1 the space of proper maps P 0(n, k) and the space of local maps F 0(n, k) are not homotopy equivalent.
LA - eng
KW - Proper map; Local map; Homotopy equivalence; proper map; local map; homotopy equivalence; contractible
UR - http://eudml.org/doc/269635
ER -
References
top- [1] Abd-Allah A.M., Brown R., A compact-open topology on partial maps with open domain, J. London Math. Soc., 1980, 21(3), 480–486 http://dx.doi.org/10.1112/jlms/s2-21.3.480 Zbl0436.54012
- [2] Bartłomiejczyk P., Geba K., Izydorek M., Otopy classes of equivariant maps, J. Fixed Point Theory Appl., 2010, 7(1), 145–160 http://dx.doi.org/10.1007/s11784-010-0013-0 Zbl1205.55008
- [3] Bartłomiejczyk P., Nowak-Przygodzki P., Gradient otopies of gradient local maps, Fund. Math., 2011, 214(1), 89–100 http://dx.doi.org/10.4064/fm214-1-6 Zbl1229.55003
- [4] Bartłomiejczyk P., Nowak-Przygodzki P., Proper gradient otopies, Topology Appl., 2012, 159(10–11), 2570–2579 http://dx.doi.org/10.1016/j.topol.2012.04.014 Zbl1247.55002
- [5] Bartłomiejczyk P., Nowak-Przygodzki P., The exponential law for partial, local and proper maps and its application to otopy theory, Commun. Contemp. Math. (in press), DOI: 10.1142/S0219199714500059 Zbl1303.55003
- [6] Becker J.C., Gottlieb D.H., Vector fields and transfers, Manuscripta Math., 1991, 72(2), 111–130 http://dx.doi.org/10.1007/BF02568269 Zbl0736.55012
- [7] Becker J.C., Gottlieb D.H., Spaces of local vector fields, In: Higher Homotopy Structures in Topology and Mathematical Physics, Contemp. Math., 227, American Mathematical Society, Providence, 1999, 21–28 http://dx.doi.org/10.1090/conm/227/03250
- [8] Cohen F.R., Fibration and product decompositions in nonstable homotopy theory, In: Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, 1175–1208 http://dx.doi.org/10.1016/B978-044481779-2/50025-0 Zbl0871.55008
- [9] Dancer E.N., Geba K., Rybicki S.M., Classification of homotopy classes of equivariant gradient maps, Fund. Math., 2005, 185(1), 1–18 http://dx.doi.org/10.4064/fm185-1-1 Zbl1086.47031
- [10] Serre J.-P., Homologie singulière des espaces fibrés, Applications, Ann. of Math., 1951, 54(3), 425–505 http://dx.doi.org/10.2307/1969485 Zbl0045.26003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.