On phase segregation in nonlocal two-particle Hartree systems

Walter Aschbacher; Marco Squassina

Open Mathematics (2009)

  • Volume: 7, Issue: 2, page 230-248
  • ISSN: 2391-5455

Abstract

top
We prove the phase segregation phenomenon to occur in the ground state solutions of an interacting system of two self-coupled repulsive Hartree equations for large nonlinear and nonlocal interactions. A self-consistent numerical investigation visualizes the approach to this segregated regime.

How to cite

top

Walter Aschbacher, and Marco Squassina. "On phase segregation in nonlocal two-particle Hartree systems." Open Mathematics 7.2 (2009): 230-248. <http://eudml.org/doc/269648>.

@article{WalterAschbacher2009,
abstract = {We prove the phase segregation phenomenon to occur in the ground state solutions of an interacting system of two self-coupled repulsive Hartree equations for large nonlinear and nonlocal interactions. A self-consistent numerical investigation visualizes the approach to this segregated regime.},
author = {Walter Aschbacher, Marco Squassina},
journal = {Open Mathematics},
keywords = {Coupled Hartree equations; Quantum many-body problem; Hartree approximation; Ground states solutions; Phase segregation; Finite elements; Self-consistent iteration; coupled Hartree equations; quantum many-body problem; ground states solutions; phase segregation; finite elements; self-consistent iteration},
language = {eng},
number = {2},
pages = {230-248},
title = {On phase segregation in nonlocal two-particle Hartree systems},
url = {http://eudml.org/doc/269648},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Walter Aschbacher
AU - Marco Squassina
TI - On phase segregation in nonlocal two-particle Hartree systems
JO - Open Mathematics
PY - 2009
VL - 7
IS - 2
SP - 230
EP - 248
AB - We prove the phase segregation phenomenon to occur in the ground state solutions of an interacting system of two self-coupled repulsive Hartree equations for large nonlinear and nonlocal interactions. A self-consistent numerical investigation visualizes the approach to this segregated regime.
LA - eng
KW - Coupled Hartree equations; Quantum many-body problem; Hartree approximation; Ground states solutions; Phase segregation; Finite elements; Self-consistent iteration; coupled Hartree equations; quantum many-body problem; ground states solutions; phase segregation; finite elements; self-consistent iteration
UR - http://eudml.org/doc/269648
ER -

References

top
  1. [1] Ablowitz M.J., Prinari B., Trubatch A.D., Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society, Lecture Note Series 302, Cambridge University Press, 2004 Zbl1057.35058
  2. [2] Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A., Observation of Bose-Einstein condensation in a diluite atomic vapor, Science, 1995, 269, 198–201 http://dx.doi.org/10.1126/science.269.5221.198[Crossref] 
  3. [3] Aschbacher W.H., Fully discrete Galerkin schemes for the nonlinear and nonlocal Hartree equation, Electron. J. Diff. Eqns., 2009, 12, 1–22 Zbl1173.35642
  4. [4] Aschbacher W.H., Fröhlich J., Graf G.M., Schnee K., Troyer M., Symmetry breaking regime in the nonlinear Hartree equation, J. Math. Phys., 2002, 43, 3879–3891 http://dx.doi.org/10.1063/1.1488673[Crossref] Zbl1060.81012
  5. [5] Bao W., Ground states and dynamics of multicomponent Bose-Einstein condensates, Multiscale Model. Simul., 2004, 2, 210–236 http://dx.doi.org/10.1137/030600209[Crossref] Zbl1062.82034
  6. [6] Caliari M., Squassina M., Location and phase segregation of ground and excited states for 2D Gross-Pitaevskii systems, Dyn. Partial Differ. Equ., 2008, 5, 117–137 Zbl1158.35322
  7. [7] Conti M., Terracini S., Verzini G., Nehari’s problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2002, 19, 871–888 http://dx.doi.org/10.1016/S0294-1449(02)00104-X[Crossref] Zbl1090.35076
  8. [8] Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S., Theory of trapped Bose-condensed gases, Rev. Mod. Phys., 1999, 71, 463–512 http://dx.doi.org/10.1103/RevModPhys.71.463[Crossref] 
  9. [9] Erdös L., Schlein B., Yau H.-T., Rigorous derivation of the Gross-Pitaevskii equation, Phys. Rev. Lett., 2007, 98, 040404 [WoS] 
  10. [10] Esry B.D., Greene C.H., Burke J.P., Bohn J.L., Hartree-Fock theory for double condensates, Phys. Rev. Lett., 1997, 78, 3594–3597 http://dx.doi.org/10.1103/PhysRevLett.78.3594[Crossref] 
  11. [11] Gross E.P., Structure of a quantized vortex in boson systems, Nuovo Cimento, 1961, 20, 454–477 http://dx.doi.org/10.1007/BF02731494[Crossref] Zbl0100.42403
  12. [12] Lieb E.H., Seiringer R., Yngvason J., Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A, 2000, 61, 043602 
  13. [13] Myatt C.J., Burt E.A., Ghrist R.W., Cornell E.A., Wieman C.E., Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett., 1997, 78, 586–589 http://dx.doi.org/10.1103/PhysRevLett.78.586[Crossref] 
  14. [14] Öhberg P., Stenholm S., Hartree-Fock treatment of two-component Bose-Einstein condensate, Phys. Rev. A, 1998, 57, 1272–1279 http://dx.doi.org/10.1103/PhysRevA.57.1272[Crossref] 
  15. [15] Pitaevskii L.P., Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, 1961, 13, 451–454 
  16. [16] Riboli F., Modugno M., Topology of the ground state of two interacting Bose-Einstein condensates, Phys. Rev. A, 2002, 65, 063614 
  17. [17] Rüegg Ch., Cavadini N., Furrer A., Güdel H-U., Krämer K., Mutka H., Wildes A., Habicht K., Vorderwisch P., Bose-Einstein condensation of the triplet states in the magnetic insulator TlCuCl3, Nature, 2003, 423,(6935):62–65 http://dx.doi.org/10.1038/nature01617[Crossref] 
  18. [18] Timmermans E., Phase separation of Bose-Einstein condensates, Phys. Rev. Lett., 1998, 81, 5718–5721 http://dx.doi.org/10.1103/PhysRevLett.81.5718[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.