Nehari's problem and competing species systems

M. Conti; S. Terracini; G. Verzini

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 6, page 871-888
  • ISSN: 0294-1449

How to cite

top

Conti, M., Terracini, S., and Verzini, G.. "Nehari's problem and competing species systems." Annales de l'I.H.P. Analyse non linéaire 19.6 (2002): 871-888. <http://eudml.org/doc/78564>.

@article{Conti2002,
author = {Conti, M., Terracini, S., Verzini, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {optimal partition; extremality conditions; superlinear elliptic equations; variational problems; Lotka-Volterra systems; existence; sign changing solutions; Nehari's method},
language = {eng},
number = {6},
pages = {871-888},
publisher = {Elsevier},
title = {Nehari's problem and competing species systems},
url = {http://eudml.org/doc/78564},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Conti, M.
AU - Terracini, S.
AU - Verzini, G.
TI - Nehari's problem and competing species systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 6
SP - 871
EP - 888
LA - eng
KW - optimal partition; extremality conditions; superlinear elliptic equations; variational problems; Lotka-Volterra systems; existence; sign changing solutions; Nehari's method
UR - http://eudml.org/doc/78564
ER -

References

top
  1. [1] Bartsch T., Wang Z.Q., On the existence of changing sign solutions for semilinear Dirichlet problem, Topol. Methods Nonlinear Anal.7 (1997) 115-131. Zbl0903.58004MR1422008
  2. [2] Bartsch T., Wang Z.Q., Existence and multiplicity results for some superlinear elliptic problem on Rn, Comm. Partial Differential Equations20 (1995) 1725-1741. Zbl0837.35043MR1349229
  3. [3] Bartsch T., Willem M., Infinitely many radial solutions of a semilinear elliptic problem on RN, Arch. Rat. Mech. Anal.124 (1993) 261-276. Zbl0790.35020MR1237913
  4. [4] Castro A., Cossio J., Neuberger J.M., A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math.27 (1997) 1041-1053. Zbl0907.35050MR1627654
  5. [5] Castro A., Cossio J., Neuberger J.M., A minimax principle, index of critical point, and existence of sign changing solutions to elliptic boundary value problems, Electron. J. Differential Equations2 (1998). Zbl0901.35028
  6. [6] Cosner C., Lazner A., Stable coexistence in the Volterra–Lotka competition model with diffusion, SIAM J. Math. Anal.44 (1984) 1112-1132. Zbl0562.92012MR766192
  7. [7] Conti M., Merizzi L., Terracini S., Remarks on variational methods and lower-upper solutions, NoDEA6 (1999) 371-393. Zbl0941.35031MR1736543
  8. [8] Dancer E.N., Competing species systems with diffusion and large interaction, Rend. Sem. Mat. Fis. Milano65 (1995) 23-33. Zbl0884.35031MR1459414
  9. [9] Dancer E.N., On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc.284 (1984) 729-743. Zbl0524.35056MR743741
  10. [10] Dancer E.N., On positive solutions of some pairs of differential equations, II, J. Differential Equations60 (1985) 236-258. Zbl0549.35024MR810554
  11. [11] Dancer E.N., On the existence and uniqueness of positive solutions for competing species models with diffusion, Trans. Amer. Math. Soc.326 (1991) 829-859. Zbl0769.35016MR1028757
  12. [12] Dancer E.N., A counterexample on competing species equations, Differential Integral Equations9 (1996) 239-246. Zbl0842.35033MR1364045
  13. [13] Dancer E.N., On uniqueness and stability for solutions of singularly perturbed predator–prey type equations with diffusion, J. Differential Equations102 (1993) 1-32. Zbl0817.35042MR1209974
  14. [14] Dancer E.N., Du Y.H., On sign-changing solutions of certain semilinear elliptic problems, Appl. Anal.56 (1995) 193-206. Zbl0835.35051MR1383886
  15. [15] Dancer E.N., Du Y.H., Positive solutions for a three-species competition system with diffusion. I. General existence results, Nonlinear Anal.24 (1995) 337-357. Zbl0824.35033MR1312772
  16. [16] Dancer E.N., Du Y.H., Positive solutions for a three-species competition system with diffusion. II. The case of equal birth rates, Nonlinear Anal.24 (1995) 359-373. Zbl0824.35034MR1312773
  17. [17] Dancer E.N., Du Y.H., Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations114 (1994) 434-475. Zbl0815.35024MR1303035
  18. [18] Dancer E.N., Guo Z.M., Uniqueness and stability for solutions of competing species equations with large interactions, Comm. Appl. Nonlinear Anal.1 (1994) 19-45. Zbl0935.35074MR1280113
  19. [19] Korman P., Leung A., On the existence and uniqueness of positive steady states in Lotka–Volterra ecological models with diffusion, Appl. Anal.26 (1987) 145-160. Zbl0639.35026MR921723
  20. [20] Lazer A.C., McKenna P.J., On steady state solutions of a system of reaction-diffusion equations from biology, Nonlinear Anal. TMA6 (1982) 523-530. Zbl0488.35039MR664014
  21. [21] Miranda C., Un'osservazione sul teorema di Brouwer, Boll. U.M.I. Serie II, Anno II1 (1940) 5-7. Zbl0024.02203MR4775
  22. [22] Nehari Z., Characteristic values associated with a class of nonlinear second order differential equations, Acta Math.105 (1961) 141-175. Zbl0099.29104MR123775
  23. [23] Wang Z.Q., On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1) (1991) 43-57. Zbl0733.35043MR1094651
  24. [24] Willem M., Minimax Theorems, Birkhäuser, 1996. Zbl0856.49001MR1400007

NotesEmbed ?

top

You must be logged in to post comments.