On manifolds with nonhomogeneous factors
Manuel Cárdenas; Francisco Lasheras; Antonio Quintero; Dušan Repovš
Open Mathematics (2012)
- Volume: 10, Issue: 3, page 857-862
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topManuel Cárdenas, et al. "On manifolds with nonhomogeneous factors." Open Mathematics 10.3 (2012): 857-862. <http://eudml.org/doc/269658>.
@article{ManuelCárdenas2012,
abstract = {We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces.},
author = {Manuel Cárdenas, Francisco Lasheras, Antonio Quintero, Dušan Repovš},
journal = {Open Mathematics},
keywords = {k-homogeneity; Rigidity; ANR; Upper semicontinuous decomposition; Generalized manifold; Cell-like resolution; General position property; Manifold recognition theorem; -homogeneity; rigidity; upper semicontinuous decomposition; generalized manifold; cell-like resolution; general position property; manifold recognition theorem},
language = {eng},
number = {3},
pages = {857-862},
title = {On manifolds with nonhomogeneous factors},
url = {http://eudml.org/doc/269658},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Manuel Cárdenas
AU - Francisco Lasheras
AU - Antonio Quintero
AU - Dušan Repovš
TI - On manifolds with nonhomogeneous factors
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 857
EP - 862
AB - We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces.
LA - eng
KW - k-homogeneity; Rigidity; ANR; Upper semicontinuous decomposition; Generalized manifold; Cell-like resolution; General position property; Manifold recognition theorem; -homogeneity; rigidity; upper semicontinuous decomposition; generalized manifold; cell-like resolution; general position property; manifold recognition theorem
UR - http://eudml.org/doc/269658
ER -
References
top- [1] Ancel F.D., Duvall P.F., Singh S., Rigid 3-dimensional compacta whose squares are manifolds, Proc. Amer. Math. Soc., 1983, 88(2), 330–332 Zbl0509.54016
- [2] Ancel F.D., Singh S., Rigid finite-dimensional compacta whose squares are manifolds, Proc. Amer. Math. Soc., 1983, 87(2), 342–346 Zbl0503.54024
- [3] Andrews J.J., Curtis M.L., n-space modulo an arc, Ann. of Math., 1962, 75, 1–7 http://dx.doi.org/10.2307/1970414 Zbl0105.17403
- [4] Arhangelskii A.V., Pearl E., Problems from A.V. Arhangelskii’s Structure and classification of topological spaces and cardinal invariants, Topology Atlas, Problems from Topology Proceedings, 2003, 123–134 available at http://at.yorku.ca/i/a/a/z/05.htm
- [5] Bass C.D., Some products of topological spaces which are manifolds, Proc. Amer. Math. Soc., 1981, 81(4), 641–646 http://dx.doi.org/10.1090/S0002-9939-1981-0601746-0 Zbl0466.57006
- [6] Brahana T.R., Products of generalized manifolds, Illinois J. Math., 1958, 2, 76–80 Zbl0080.38203
- [7] Bredon G.E., Wilder manifolds are locally orientable, Proc. Nat. Acad. Sci. U.S.A., 1969, 63, 1079–1081 http://dx.doi.org/10.1073/pnas.63.4.1079 Zbl0186.27006
- [8] Bryant J.L., Euclidean space modulo a cell, Fund. Math., 1968, 63, 43–51 Zbl0191.22103
- [9] Bryant J.L., Reflections on the Bing-Borsuk conjecture, In: Abstracts of talks presented at the 19th Annual Workshop in Geometric Topology, Grand Rapids, June 13–15, 2002, 2–3, available at http://www.calvin.edu/~venema/workshop/proceedingspapers/bryant.pdf
- [10] Daverman R.J., Decompositions of Manifolds, AMS Chelsea, Providence, 2007 Zbl1130.57001
- [11] Daverman R.J., Venema G.A., Embeddings in Manifolds, Grad. Stud. Math., 106, American Mathematical Society, Providence, 2009 Zbl1209.57002
- [12] Dranishnikov A.N., On a problem of P.S. Aleksandrov, Mat. Sb., 1988, 135(177)(4), 551–557 Zbl0643.55001
- [13] Dydak J., Walsh J.J., Infinite-dimensional compacta having cohomological dimension two: an application of the Sullivan conjecture, Topology, 1993, 32(1), 93–104 http://dx.doi.org/10.1016/0040-9383(93)90040-3 Zbl0822.55001
- [14] Fedorchuk V.V., On homogeneous Pontryagin surfaces, Dokl. Akad. Nauk, 2005, 404(5), 601–603 Zbl1126.54013
- [15] Fox R.H., Artin E., Some wild cells and spheres in three-dimensional space, Ann. of Math., 1948, 49, 979–990 http://dx.doi.org/10.2307/1969408 Zbl0033.13602
- [16] Fox R.H., Harrold O.G., The Wilder arcs, In: Topology of 3-Manifolds and Related Topics, The Univ. of Georgia Institute, 1961, Prentice-Hall, Englewood Cliffs, 1962, 184–187
- [17] Halverson D.M., Repovš D., The Bing-Borsuk and the Busemann conjectures, Math. Commun., 2008, 13(2), 163–184 Zbl1163.57015
- [18] Halverson D.M., Repovš D., Survey on the Generalized R.L. Moore problem, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia (in press), preprint available at http://arxiv.org/abs/1201.3897
- [19] Hu S., Homotopy Theory, Pure Appl. Math., 8, Academic Press, New York, 1959
- [20] Lomonaco S.J., Uncountably many mildly wild non-Wilder arcs, Proc. Amer. Math. Soc., 1968, 19(4), 895–898 http://dx.doi.org/10.1090/S0002-9939-1968-0226610-4 Zbl0169.26302
- [21] van Mill J., A rigid space X for which X × X is homogeneous; an application of infinite-dimensional topology, Proc. Amer. Math. Soc., 1981, 83(3), 597–600 Zbl0484.54032
- [22] Myers R., Uncountably many arcs in S 3 whose complements have non-isomorphic, indecomposable fundamental groups, J. Knot Theory Ramifications, 2000, 9(4), 505–521 http://dx.doi.org/10.1142/S021821650000027X Zbl1001.57032
- [23] Quinn F., Problems on homology manifolds, In: Exotic Homology Manifolds, Oberwolfach, June 29–July 5, 2003, Geom. Topol. Monogr., 9, Geometry & Topology Publications, Coventry, 2006, 87–103 http://dx.doi.org/10.2140/gtm.2006.9.87 Zbl1108.57017
- [24] Raymond F., Separation and union theorems for generalized manifolds with boundary, Michigan Math. J., 1960, 7(1), 7–21 http://dx.doi.org/10.1307/mmj/1028998337
- [25] Repovš D., Detection of higher-dimensional topological manifolds among topological spaces, In: Seminari di Geometria. Giornate di Topologia e Geometria delle Varietá, Bologna, September 27–29, 1990, Universitá degli Studi di Bologna, Dipartimento di Matematica, Bologna, 1992, 113–143
- [26] Rosicki W., On the uniqueness of the decomposition of continua into Cartesian products, Bull. Polish Acad. Sci. Math., 2003, 51(3), 247–250 Zbl1046.54010
- [27] Rushing T.B., Topological Embeddings, Pure Appl. Math., 52, Academic Press, New York-London, 1973
- [28] Smith B.J., Products of decompositions of E n, Trans. Amer. Math. Soc., 1973, 184, 31–41 Zbl0243.54004
- [29] Wilder R.L., Topology of Manifolds, Amer. Math. Soc. Colloq. Publ., 32, American Mathematical Society, Providence, 1979 Zbl0511.57001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.