On manifolds with nonhomogeneous factors

Manuel Cárdenas; Francisco Lasheras; Antonio Quintero; Dušan Repovš

Open Mathematics (2012)

  • Volume: 10, Issue: 3, page 857-862
  • ISSN: 2391-5455

Abstract

top
We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces.

How to cite

top

Manuel Cárdenas, et al. "On manifolds with nonhomogeneous factors." Open Mathematics 10.3 (2012): 857-862. <http://eudml.org/doc/269658>.

@article{ManuelCárdenas2012,
abstract = {We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces.},
author = {Manuel Cárdenas, Francisco Lasheras, Antonio Quintero, Dušan Repovš},
journal = {Open Mathematics},
keywords = {k-homogeneity; Rigidity; ANR; Upper semicontinuous decomposition; Generalized manifold; Cell-like resolution; General position property; Manifold recognition theorem; -homogeneity; rigidity; upper semicontinuous decomposition; generalized manifold; cell-like resolution; general position property; manifold recognition theorem},
language = {eng},
number = {3},
pages = {857-862},
title = {On manifolds with nonhomogeneous factors},
url = {http://eudml.org/doc/269658},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Manuel Cárdenas
AU - Francisco Lasheras
AU - Antonio Quintero
AU - Dušan Repovš
TI - On manifolds with nonhomogeneous factors
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 857
EP - 862
AB - We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces.
LA - eng
KW - k-homogeneity; Rigidity; ANR; Upper semicontinuous decomposition; Generalized manifold; Cell-like resolution; General position property; Manifold recognition theorem; -homogeneity; rigidity; upper semicontinuous decomposition; generalized manifold; cell-like resolution; general position property; manifold recognition theorem
UR - http://eudml.org/doc/269658
ER -

References

top
  1. [1] Ancel F.D., Duvall P.F., Singh S., Rigid 3-dimensional compacta whose squares are manifolds, Proc. Amer. Math. Soc., 1983, 88(2), 330–332 Zbl0509.54016
  2. [2] Ancel F.D., Singh S., Rigid finite-dimensional compacta whose squares are manifolds, Proc. Amer. Math. Soc., 1983, 87(2), 342–346 Zbl0503.54024
  3. [3] Andrews J.J., Curtis M.L., n-space modulo an arc, Ann. of Math., 1962, 75, 1–7 http://dx.doi.org/10.2307/1970414 Zbl0105.17403
  4. [4] Arhangelskii A.V., Pearl E., Problems from A.V. Arhangelskii’s Structure and classification of topological spaces and cardinal invariants, Topology Atlas, Problems from Topology Proceedings, 2003, 123–134 available at http://at.yorku.ca/i/a/a/z/05.htm 
  5. [5] Bass C.D., Some products of topological spaces which are manifolds, Proc. Amer. Math. Soc., 1981, 81(4), 641–646 http://dx.doi.org/10.1090/S0002-9939-1981-0601746-0 Zbl0466.57006
  6. [6] Brahana T.R., Products of generalized manifolds, Illinois J. Math., 1958, 2, 76–80 Zbl0080.38203
  7. [7] Bredon G.E., Wilder manifolds are locally orientable, Proc. Nat. Acad. Sci. U.S.A., 1969, 63, 1079–1081 http://dx.doi.org/10.1073/pnas.63.4.1079 Zbl0186.27006
  8. [8] Bryant J.L., Euclidean space modulo a cell, Fund. Math., 1968, 63, 43–51 Zbl0191.22103
  9. [9] Bryant J.L., Reflections on the Bing-Borsuk conjecture, In: Abstracts of talks presented at the 19th Annual Workshop in Geometric Topology, Grand Rapids, June 13–15, 2002, 2–3, available at http://www.calvin.edu/~venema/workshop/proceedingspapers/bryant.pdf 
  10. [10] Daverman R.J., Decompositions of Manifolds, AMS Chelsea, Providence, 2007 Zbl1130.57001
  11. [11] Daverman R.J., Venema G.A., Embeddings in Manifolds, Grad. Stud. Math., 106, American Mathematical Society, Providence, 2009 Zbl1209.57002
  12. [12] Dranishnikov A.N., On a problem of P.S. Aleksandrov, Mat. Sb., 1988, 135(177)(4), 551–557 Zbl0643.55001
  13. [13] Dydak J., Walsh J.J., Infinite-dimensional compacta having cohomological dimension two: an application of the Sullivan conjecture, Topology, 1993, 32(1), 93–104 http://dx.doi.org/10.1016/0040-9383(93)90040-3 Zbl0822.55001
  14. [14] Fedorchuk V.V., On homogeneous Pontryagin surfaces, Dokl. Akad. Nauk, 2005, 404(5), 601–603 Zbl1126.54013
  15. [15] Fox R.H., Artin E., Some wild cells and spheres in three-dimensional space, Ann. of Math., 1948, 49, 979–990 http://dx.doi.org/10.2307/1969408 Zbl0033.13602
  16. [16] Fox R.H., Harrold O.G., The Wilder arcs, In: Topology of 3-Manifolds and Related Topics, The Univ. of Georgia Institute, 1961, Prentice-Hall, Englewood Cliffs, 1962, 184–187 
  17. [17] Halverson D.M., Repovš D., The Bing-Borsuk and the Busemann conjectures, Math. Commun., 2008, 13(2), 163–184 Zbl1163.57015
  18. [18] Halverson D.M., Repovš D., Survey on the Generalized R.L. Moore problem, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia (in press), preprint available at http://arxiv.org/abs/1201.3897 
  19. [19] Hu S., Homotopy Theory, Pure Appl. Math., 8, Academic Press, New York, 1959 
  20. [20] Lomonaco S.J., Uncountably many mildly wild non-Wilder arcs, Proc. Amer. Math. Soc., 1968, 19(4), 895–898 http://dx.doi.org/10.1090/S0002-9939-1968-0226610-4 Zbl0169.26302
  21. [21] van Mill J., A rigid space X for which X × X is homogeneous; an application of infinite-dimensional topology, Proc. Amer. Math. Soc., 1981, 83(3), 597–600 Zbl0484.54032
  22. [22] Myers R., Uncountably many arcs in S 3 whose complements have non-isomorphic, indecomposable fundamental groups, J. Knot Theory Ramifications, 2000, 9(4), 505–521 http://dx.doi.org/10.1142/S021821650000027X Zbl1001.57032
  23. [23] Quinn F., Problems on homology manifolds, In: Exotic Homology Manifolds, Oberwolfach, June 29–July 5, 2003, Geom. Topol. Monogr., 9, Geometry & Topology Publications, Coventry, 2006, 87–103 http://dx.doi.org/10.2140/gtm.2006.9.87 Zbl1108.57017
  24. [24] Raymond F., Separation and union theorems for generalized manifolds with boundary, Michigan Math. J., 1960, 7(1), 7–21 http://dx.doi.org/10.1307/mmj/1028998337 
  25. [25] Repovš D., Detection of higher-dimensional topological manifolds among topological spaces, In: Seminari di Geometria. Giornate di Topologia e Geometria delle Varietá, Bologna, September 27–29, 1990, Universitá degli Studi di Bologna, Dipartimento di Matematica, Bologna, 1992, 113–143 
  26. [26] Rosicki W., On the uniqueness of the decomposition of continua into Cartesian products, Bull. Polish Acad. Sci. Math., 2003, 51(3), 247–250 Zbl1046.54010
  27. [27] Rushing T.B., Topological Embeddings, Pure Appl. Math., 52, Academic Press, New York-London, 1973 
  28. [28] Smith B.J., Products of decompositions of E n, Trans. Amer. Math. Soc., 1973, 184, 31–41 Zbl0243.54004
  29. [29] Wilder R.L., Topology of Manifolds, Amer. Math. Soc. Colloq. Publ., 32, American Mathematical Society, Providence, 1979 Zbl0511.57001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.