On conformally flat Lorentz parabolic manifolds
Open Mathematics (2014)
- Volume: 12, Issue: 6, page 861-878
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topYoshinobu Kamishima. "On conformally flat Lorentz parabolic manifolds." Open Mathematics 12.6 (2014): 861-878. <http://eudml.org/doc/269662>.
@article{YoshinobuKamishima2014,
abstract = {We introduce conformally flat Fefferman-Lorentz manifold of parabolic type as a special class of Lorentz parabolic manifolds. It is a smooth (2n+2)-manifold locally modeled on (Û(n+1, 1), S 2n+1,1). As the terminology suggests, when a Fefferman-Lorentz manifold M is conformally flat, M is a Fefferman-Lorentz manifold of parabolic type. We shall discuss which compact manifolds occur as a conformally flat Fefferman-Lorentz manifold of parabolic type.},
author = {Yoshinobu Kamishima},
journal = {Open Mathematics},
keywords = {Lorentz parabolic structure; Conformally flat Lorentz structure; Fefferman-Lorentz manifold; Uniformization; Holonomy group; Developing map; Similarity structure; conformally flat Lorentz structure; uniformization; holonomy group; developing map; similarity structure},
language = {eng},
number = {6},
pages = {861-878},
title = {On conformally flat Lorentz parabolic manifolds},
url = {http://eudml.org/doc/269662},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Yoshinobu Kamishima
TI - On conformally flat Lorentz parabolic manifolds
JO - Open Mathematics
PY - 2014
VL - 12
IS - 6
SP - 861
EP - 878
AB - We introduce conformally flat Fefferman-Lorentz manifold of parabolic type as a special class of Lorentz parabolic manifolds. It is a smooth (2n+2)-manifold locally modeled on (Û(n+1, 1), S 2n+1,1). As the terminology suggests, when a Fefferman-Lorentz manifold M is conformally flat, M is a Fefferman-Lorentz manifold of parabolic type. We shall discuss which compact manifolds occur as a conformally flat Fefferman-Lorentz manifold of parabolic type.
LA - eng
KW - Lorentz parabolic structure; Conformally flat Lorentz structure; Fefferman-Lorentz manifold; Uniformization; Holonomy group; Developing map; Similarity structure; conformally flat Lorentz structure; uniformization; holonomy group; developing map; similarity structure
UR - http://eudml.org/doc/269662
ER -
References
top- [1] Aristide T., Closed similarity Lorentzian affine manifolds, Proc. Amer. Math. Soc., 2004, 132(12), 3697–3702 http://dx.doi.org/10.1090/S0002-9939-04-07560-4 Zbl1056.53017
- [2] Barbot T., Charette V., Drumm T., Goldman W.M., Melnick K., A primer on the (2+1) Einstein universe, In: Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., European Mathematical Society, Zürich, 2008, 179–229 http://dx.doi.org/10.4171/051-1/6
- [3] Chen S.S., Greenberg L., Hyperbolic Spaces, Contribution to Analysis, Academic Press, New York, 1974, 49–87
- [4] Fefferman C., Parabolic invariant theory in complex analysis, Adv. in Math., 1979, 31(2), 131–262 http://dx.doi.org/10.1016/0001-8708(79)90025-2
- [5] Goldman W.M., Kamishima Y., The fundamental group of a compact flat Lorentz space form is virtually polycyclic, J. Differential Geom., 1984, 19(1), 233–240 Zbl0546.53039
- [6] Kamishima Y., Conformally flat manifolds whose development maps are not surjective. I, Trans. Amer. Math. Soc., 1986, 294(2), 607–623 http://dx.doi.org/10.1090/S0002-9947-1986-0825725-2 Zbl0608.53036
- [7] Kamishima Y., Geometric flows on compact manifolds and global rigidity, Topology, 1996, 35(2), 439–450 http://dx.doi.org/10.1016/0040-9383(95)00025-9
- [8] Kamishima Y., Lorentzian similarity manifold, Cent. Eur. J. Math., 2012, 10(5), 1771–1788 http://dx.doi.org/10.2478/s11533-012-0076-9 Zbl1267.53073
- [9] Kamishima Y., Fefferman-Lorentz manifolds arising from parabolic geometry (manuscript)
- [10] Kamishima Y., Tsuboi T., CR-structures on Seifert manifolds, Invent. Math., 1991, 104(1), 149–163 http://dx.doi.org/10.1007/BF01245069 Zbl0728.32012
- [11] Kobayashi S., Transformation Groups in Differential Geometry, Ergeb. Math. Grenzgeb., 70, Springer, New York-Heidelberg, 1972 http://dx.doi.org/10.1007/978-3-642-61981-6
- [12] Kulkarni R.S., On the principle of uniformization, J. Differential Geom., 1978, 13(1), 109–138 Zbl0381.53023
- [13] Kulkarni R.S., Conformal structures and Möbius structures, Aspects Math., E12, Conformal Geometry, Vieweg, Braunschweig, 1988, 1–39
- [14] Kulkarni R.S., Pinkall U., Uniformizations of geometric structures with applications to conformall geometry, In: Differential Geomtery, Peñiscola, June 2–9, 1985, Lecture Notes in Math., 1209, Springer, Berlin, 1986, 190–209 http://dx.doi.org/10.1007/BFb0076632
- [15] Lee J.M., The Fefferman metric and pseudo-Hermitian invariants, Trans. Amer. Math. Soc., 1986, 296(1), 411–429 Zbl0595.32026
- [16] Lee K.B., Raymond F., Seifert Fiberings, Math. Surveys Monogr., 166, American Mathematical Society, Providence, 2010 http://dx.doi.org/10.1090/surv/166
- [17] Miner R.R., Spherical CR manifolds with amenable holonomy, Internat. J. Math., 1990, 1(4), 479–501 http://dx.doi.org/10.1142/S0129167X9000023X Zbl0732.53057
- [18] Schoen R., On the conformal and CR automorphism groups, Geom. Funct. Anal., 1995, 5(2), 464–481 http://dx.doi.org/10.1007/BF01895676 Zbl0835.53015
- [19] Sternberg S., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, 1964 Zbl0129.13102
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.