Geography of log models: theory and applications

Vyacheslav Shokurov; Sung Choi

Open Mathematics (2011)

  • Volume: 9, Issue: 3, page 489-534
  • ISSN: 2391-5455

Abstract

top
This is an introduction to geography of log models with applications to positive cones of Fano type (FT) varieties and to geometry of minimal models and Mori fibrations.

How to cite

top

Vyacheslav Shokurov, and Sung Choi. "Geography of log models: theory and applications." Open Mathematics 9.3 (2011): 489-534. <http://eudml.org/doc/269681>.

@article{VyacheslavShokurov2011,
abstract = {This is an introduction to geography of log models with applications to positive cones of Fano type (FT) varieties and to geometry of minimal models and Mori fibrations.},
author = {Vyacheslav Shokurov, Sung Choi},
journal = {Open Mathematics},
keywords = {Minimal Model Program; Minimal model; Mori fibration; Minimal model program; Sarkisov link},
language = {eng},
number = {3},
pages = {489-534},
title = {Geography of log models: theory and applications},
url = {http://eudml.org/doc/269681},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Vyacheslav Shokurov
AU - Sung Choi
TI - Geography of log models: theory and applications
JO - Open Mathematics
PY - 2011
VL - 9
IS - 3
SP - 489
EP - 534
AB - This is an introduction to geography of log models with applications to positive cones of Fano type (FT) varieties and to geometry of minimal models and Mori fibrations.
LA - eng
KW - Minimal Model Program; Minimal model; Mori fibration; Minimal model program; Sarkisov link
UR - http://eudml.org/doc/269681
ER -

References

top
  1. [1] Ambro F., The moduli b-divisor of an lc-trivial fibration, Compos. Math., 2005, 141(2), 385–403 http://dx.doi.org/10.1112/S0010437X04001071 Zbl1094.14025
  2. [2] Birkar C., Cascini P., Hacon C.D., McKernan J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 2010, 23(2), 405–468 http://dx.doi.org/10.1090/S0894-0347-09-00649-3 Zbl1210.14019
  3. [3] Brown G., Corti A., Zucconi F., Birational geometry of 3-fold Morifibre spaces, In: The Fano Conference, 2004, Univ. Torino, Turin, 235–275 Zbl1063.14019
  4. [4] Cheltsov I.A., Grinenko M.M., Birational rigidity is not an open property, preprint available at http://arxiv.org/abs/math/0612159 
  5. [5] Choi S., Geography of Log Models and its Applications, Ph.D. thesis, Johns Hopkins University, Baltimore, 2008 
  6. [6] Corti A., Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom., 1995, 4(2), 223–254 Zbl0866.14007
  7. [7] Corti A., Singularities of linear systems and 3-fold birational geometry, In: Explicit Birational Geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge University Press, Cambridge, 2000, 259–312 Zbl0960.14017
  8. [8] Grinenko M.M., Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2, Sb. Math., 2000, 191(5–6), 633–653 http://dx.doi.org/10.1070/SM2000v191n05ABEH000475 
  9. [9] Grinenko M.M., Fibrations into del Pezzo surfaces, Russian Math. Surveys, 2006, 61(2), 255–300 http://dx.doi.org/10.1070/RM2006v061n02ABEH004312 Zbl1124.14020
  10. [10] Iskovskih V.A., On the rationality problem for three-dimensional algebraic varieties fibered over del Pezzo surfaces, Trudy Mat. Inst. Steklov, 1995, 208, Teor. Chisel, Algebra i Algebr. Geom., 128–138 
  11. [11] Iskovskih V.A., A rationality criterion for conic bundles, Sb. Mat, 1996, 187(7), 1021–1038 http://dx.doi.org/10.1070/SM1996v187n07ABEH000145 Zbl0922.14026
  12. [12] Iskovskikh V.A., Shokurov V.V., Birational models and flips, Russian Math. Surveys, 2005, 60(1), 27–94 http://dx.doi.org/10.1070/RM2005v060n01ABEH000807 Zbl1079.14023
  13. [13] Kawamata Y, Matsuda K., Matsuki K., Introduction to the minimal model problem, In: Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 Zbl0672.14006
  14. [14] Klee V, Some characterizations of convex polyhedra, Acta Math., 1959, 102(1–2), 79–107 http://dx.doi.org/10.1007/BF02559569 Zbl0094.16802
  15. [15] Kollár J., Miyaoka Y, Mori S., Takagi H., Boundedness of canonical Q-Fano 3-folds Proc. Japan Acad. Ser. A Math. Sci., 2000, 76(5), 73–77 http://dx.doi.org/10.3792/pjaa.76.73 Zbl0981.14016
  16. [16] Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge University Press, Cambridge, 1998 http://dx.doi.org/10.1017/CBO9780511662560 Zbl0926.14003
  17. [17] Park J., Birational maps of del Pezzo fibrations, J. Reine Angew. Math., 2001, 538, 213–221 http://dx.doi.org/10.1515/crll.2001.066 
  18. [18] Prokhorov Yu.G., Shokurov V.V., Towards the second main theorem on complements, J. Algebraic Geom., 2009, 18(1), 151–199 Zbl1159.14020
  19. [19] Pukhlikov A.V., Birational automorphisms of three-dimensional algebraic varieties with a pencil of del Pezzo surfaces, Izv. Math., 1998, 62(1), 115–155 http://dx.doi.org/10.1070/IM1998v062n01ABEH000188 Zbl0948.14008
  20. [20] Sarkisov V.G., Birational automorphisms of conic bundles, Math. USSR-Izv, 1981, 17(4), 177–202 http://dx.doi.org/10.1070/IM1981v017n01ABEH001326 Zbl0466.14012
  21. [21] Sarkisov V.G., On conic bundle structures, Math. USSR-Izv, 1982, 20(2), 355–390 http://dx.doi.org/10.1070/IM1983v020n02ABEH001354 Zbl0593.14034
  22. [22] Shokurov V.V., The nonvanishing theorem, Math. USSR-Izv, 1986, 26(3), 591–604 http://dx.doi.org/10.1070/IM1986v026n03ABEH001160 Zbl0605.14006
  23. [23] Shokurov V.V., Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat, 1992, 56(1), 105–203 
  24. [24] Shokurov V.V., Anticanonical boundedness for curves, Appendix to: Nikulin V.V., The diagram method for 3-folds and its application to the Kähler cone and Picard number of Calabi-Yau 3-folds, In: Higher Dimensional Complex Varieties, Trento, June 1994, de Gruyter, Berlin, 1996, 321–328 
  25. [25] Shokurov V.V., 3-fold log models, J. Math. Sci., 1996, 81(3), 2667–2699 http://dx.doi.org/10.1007/BF02362335 Zbl0873.14014
  26. [26] Shokurov V.V., Prelimiting flips, Proc. Steklov Inst. Math., 2003, 240(1), 75–213 Zbl1082.14019
  27. [27] Shokurov V.V., Letters of a bi-rationalist. VII Ordered termination, Proc. Steklov Inst. Math., 2009, 264(1), 178–200 http://dx.doi.org/10.1134/S0081543809010192 Zbl1312.14041
  28. [28] Zagorskii A.A., On three-dimensional conical bundles, Mat. Zametki., 1977, 21(6), 745–758 (in Russian) Zbl0369.14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.