-Fano threefolds of large Fano index. I.
In this paper we classify rank two Fano bundles on Fano manifolds satisfying . The classification is obtained via the computation of the nef and pseudoeffective cones of the projectivization , that allows us to obtain the cohomological invariants of and . As a by-product we discuss Fano bundles associated to congruences of lines, showing that their varieties of minimal rational tangents may have several linear components.
We prove that Kummer threefolds with algebraic dimension have Kodaira dimension 0.
In this paper we prove that for a nonsingular projective variety of dimension at most 4 and with non-negative Kodaira dimension, the Kodaira dimension of coherent subsheaves of is bounded from above by the Kodaira dimension of the variety. This implies the finiteness of the fundamental group for such an provided that has vanishing Kodaira dimension and non-trivial holomorphic Euler characteristic.
We give a one-parameter family of Bridgeland stability conditions on the derived category of a smooth projective complex surface and describe “wall-crossing behavior” for objects with the same invariants as when generates Pic and . If, in addition, is a or Abelian surface, we use this description to construct a sequence of fine moduli spaces of Bridgeland-stable objects via Mukai flops and generalized elementary modifications of the universal coherent sheaf. We also discover a natural...
Étant donnée une variété kählérienne compacte , on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type . Lorsque est projective, les traces de ces cônes sur l’espace de Néron–Severi engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.
In this appendix, we observe that Iitaka’s conjecture fits in the more general context of special manifolds, in which the relevant statements follow from the particular cases of projective and simple manifolds.
Una contrazione su una varietà proiettiva liscia è data da una mappa propria, suriettiva e a fibre connesse in una varietà irriducibile normale . La contrazione si dice di Fano-Mori se inoltre è -ampio. Nel lavoro, naturale seguito e completamento delle ricerche introdotte in [A-W3], si studiano diversi aspetti delle contrazioni di Fano-Mori attraverso esempi (capitolo 1) e teoremi di struttura (capitoli 3 e 4). Si discutono anche alcune applicazioni allo studio di morfismi birazionali propri...