Haar system on a product of zero-dimensional compact groups

Sergei Lukomskii

Open Mathematics (2011)

  • Volume: 9, Issue: 3, page 627-639
  • ISSN: 2391-5455

Abstract

top
In this work, we study the problem of constructing Haar bases on a product of arbitrary compact zero-dimensional Abelian groups. A general scheme for the construction of Haar functions is given for arbitrary dimension. For dimension d=2, we describe all Haar functions.

How to cite

top

Sergei Lukomskii. "Haar system on a product of zero-dimensional compact groups." Open Mathematics 9.3 (2011): 627-639. <http://eudml.org/doc/269682>.

@article{SergeiLukomskii2011,
abstract = {In this work, we study the problem of constructing Haar bases on a product of arbitrary compact zero-dimensional Abelian groups. A general scheme for the construction of Haar functions is given for arbitrary dimension. For dimension d=2, we describe all Haar functions.},
author = {Sergei Lukomskii},
journal = {Open Mathematics},
keywords = {Compact zero-dimensional groups; Characters; Haar functions; Wavelet bases; compact zero-dimensional groups; characters; wavelet bases},
language = {eng},
number = {3},
pages = {627-639},
title = {Haar system on a product of zero-dimensional compact groups},
url = {http://eudml.org/doc/269682},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Sergei Lukomskii
TI - Haar system on a product of zero-dimensional compact groups
JO - Open Mathematics
PY - 2011
VL - 9
IS - 3
SP - 627
EP - 639
AB - In this work, we study the problem of constructing Haar bases on a product of arbitrary compact zero-dimensional Abelian groups. A general scheme for the construction of Haar functions is given for arbitrary dimension. For dimension d=2, we describe all Haar functions.
LA - eng
KW - Compact zero-dimensional groups; Characters; Haar functions; Wavelet bases; compact zero-dimensional groups; characters; wavelet bases
UR - http://eudml.org/doc/269682
ER -

References

top
  1. [1] Agaev G.N., Vilenkin N.Ya., Dzhafarli G.M., Rubinshteĭn A.I., Multiplicative Systems and Harmonic Analysis on Zero-Dimensional Groups, ELM, Baku, 1981 (in Russian) 
  2. [2] Albeverio S., Khrennikov A.Yu., Shelkovich V.M., Theory of p-adic Distributions: Linear and Nonlinear Models, London Math. Soc. Lecture Note Ser., 370, Cambridge University Press, Cambridge, 2010 Zbl1198.46001
  3. [3] Albeverio S., Evdokimov S., Skopina M., p-adic nonorthogonal wavelet bases, Tr. Mat. Inst. Steklova, 2009, 265, Izbrannye Voprosy Matematicheskoi Fiziki i p-adicheskogo Analiza, 7–18 
  4. [4] Albeverio S., Evdokimov S., Skopina M., p-adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl., 2010, 16(5), 693–714 http://dx.doi.org/10.1007/s00041-009-9118-5 Zbl1202.42059
  5. [5] Benedetto J.J., Benedetto R.L., A wavelet theory for local fields and related groups, J. Geom. Anal., 2004, 14(3), 423–456 Zbl1114.42015
  6. [6] Benedetto R.L., Examples of wavelets for local fields, In: Wavelets, Frames and Operator Theory, Contemp. Math., 345, American Mathematical Society, Providence, 2004, 27–47 Zbl1062.42027
  7. [7] Evdokimov S.A., Skopina M.A., 2-adic wavelet bases, Trudy Inst. Mat. i Meh. Ural. Otd. Ross. Akad. Nauk, 2009, 15(1), 135–146 (in Russian) Zbl1231.42037
  8. [8] Farkov Yu.A., Orthogonal wavelets on direct products of cyclic groups, Math. Notes, 2007, 82(6), 843–859 http://dx.doi.org/10.1134/S0001434607110296 Zbl1142.42015
  9. [9] Farkov Yu.A., Orthogonal wavelets with compact support on locally compact abelian groups, Izv. Math., 2005, 69(3), 623–650 http://dx.doi.org/10.1070/IM2005v069n03ABEH000540 Zbl1086.43006
  10. [10] Golubov B.I., On one class of complete orthogonal systems, Sibirsk. Mat. Zh., 1968, 9(2), 297–314 (in Russian) Zbl0183.06301
  11. [11] Haar A., Zur Theorie der orthogonalen Funktionen systeme, Math. Ann., 1910, 69(3), 331–371 http://dx.doi.org/10.1007/BF01456326 Zbl41.0469.03
  12. [12] Khrennikov A.Y., Shelkovich V.M., Non-Haar p-adic wavelets and their application to pseudo-differential operators and equations, Appl. Comput. Harmon. Anal., 2010, 28(1), 1–23 http://dx.doi.org/10.1016/j.acha.2009.05.007 Zbl1184.46066
  13. [13] Khrennikov A.Yu., Shelkovich V.M., An infinite family of p-adic non-Haar wavelet bases and pseudo-differential operators, P-Adic Numbers Ultrametric Anal. Appl., 2010, 1(3), 204–216 http://dx.doi.org/10.1134/S2070046609030030 Zbl1187.42034
  14. [14] King E.J., Skopina M.A., Quincunx multiresolution analysis for L 2(ℚ 22), P-Adic Numbers Ultrametric Anal. Appl., 2010, 2(3), 222–231 http://dx.doi.org/10.1134/S2070046610030040 
  15. [15] Kozyrev S.V., Wavelet theory as p-adic spectral analysis, Izv. Math., 2002, 66(2), 367–376 http://dx.doi.org/10.1070/IM2002v066n02ABEH000381 Zbl1016.42025
  16. [16] Lang W.C., Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal., 1996, 27(1), 305–312 http://dx.doi.org/10.1137/S0036141093248049 Zbl0841.42014
  17. [17] Lang W.C., Wavelet analysis on the Cantor dyadic group, Houston J. Math., 1998, 24(3), 533–544 Zbl0963.42024
  18. [18] Lang W.C., Fractal multiwavelets related to the Cantor dyadic group, Internat. J. Math. Math. Sci., 1998, 21(2), 307–314 http://dx.doi.org/10.1155/S0161171298000428 Zbl0897.42020
  19. [19] Lukomskii S.F., On Haar series on compact zero-dimensional groups, Izv. Saratov. Univ. Mat. Mekh. Inform., 2009, 9(1), 14–19 (in Russian) 
  20. [20] Lukomskii S.F., Multiresolution analysis on zero-dimensional groups, and wavelet bases, Sb. Math., 2010, 201(5), 669–691 http://dx.doi.org/10.1070/SM2010v201n05ABEH004088 Zbl1201.42026
  21. [21] Lukomskii S.F., On Haar system on the product of groups of p-adic integer, Math. Notes (in press) Zbl1290.42067
  22. [22] Khrennikov A.Yu., Shelkovich V.M., Skopina M.A., p-adic refinable functions and MRA-based wavelets, J. Approx. Theory, 2009, 161(1), 226–238 http://dx.doi.org/10.1016/j.jat.2008.08.008 Zbl1205.42031
  23. [23] Protasov V.Yu., Farkov Yu.A., Dyadic wavelets and refinable functions on a half-line, Sb. Math., 2006, 197(10), 1529–1558 http://dx.doi.org/10.1070/SM2006v197n10ABEH003811 Zbl1214.42076
  24. [24] Shelkovich V.M., Skopina M.A., p-adic Haar multiresolution analysis and pseudo-differential operators, J. Fourier Anal. Appl., 2009, 15(3), 366–393 http://dx.doi.org/10.1007/s00041-008-9050-0 Zbl1192.42024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.