Operator-valued Feynman integral via conditional Feynman integrals on a function space
Open Mathematics (2010)
- Volume: 8, Issue: 5, page 908-927
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDong Cho. "Operator-valued Feynman integral via conditional Feynman integrals on a function space." Open Mathematics 8.5 (2010): 908-927. <http://eudml.org/doc/269685>.
@article{DongCho2010,
abstract = {Let C 0r [0; t] denote the analogue of the r-dimensional Wiener space, define X t: C r[0; t] → ℝ2r by X t (x) = (x(0); x(t)). In this paper, we introduce a simple formula for the conditional expectations with the conditioning function X t. Using this formula, we evaluate the conditional analytic Feynman integral for the functional \[ \Gamma \_t \left( x \right) = exp \left\lbrace \{\int \_0^t \{\theta \left( \{s,x\left( s \right)\} \right)d\eta \left( s \right)\} \} \right\rbrace \varphi \left( \{x\left( t \right)\} \right) x \in C^r \left[ \{0,t\} \right] \]
, where η is a complex Borel measure on [0, t], and θ(s, ·) and φ are the Fourier-Stieltjes transforms of the complex Borel measures on ℝr. We then introduce an integral transform as an analytic operator-valued Feynman integral over C r [0, t], and evaluate the integral transform for the function Γt via the conditional analytic Feynman integral as a kernel.},
author = {Dong Cho},
journal = {Open Mathematics},
keywords = {Analogue of Wiener measure; Conditional analytic Feynman integral; Conditional analytic Wiener integral; Operator-valued Feynman integral; Simple formula for conditional expectation; Wiener space; analogue of Wiener measure; conditional analytic Feynman integral; conditional analytic Wiener integral; operator-valued Feynman integral; simple formula for conditional expectation},
language = {eng},
number = {5},
pages = {908-927},
title = {Operator-valued Feynman integral via conditional Feynman integrals on a function space},
url = {http://eudml.org/doc/269685},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Dong Cho
TI - Operator-valued Feynman integral via conditional Feynman integrals on a function space
JO - Open Mathematics
PY - 2010
VL - 8
IS - 5
SP - 908
EP - 927
AB - Let C 0r [0; t] denote the analogue of the r-dimensional Wiener space, define X t: C r[0; t] → ℝ2r by X t (x) = (x(0); x(t)). In this paper, we introduce a simple formula for the conditional expectations with the conditioning function X t. Using this formula, we evaluate the conditional analytic Feynman integral for the functional \[ \Gamma _t \left( x \right) = exp \left\lbrace {\int _0^t {\theta \left( {s,x\left( s \right)} \right)d\eta \left( s \right)} } \right\rbrace \varphi \left( {x\left( t \right)} \right) x \in C^r \left[ {0,t} \right] \]
, where η is a complex Borel measure on [0, t], and θ(s, ·) and φ are the Fourier-Stieltjes transforms of the complex Borel measures on ℝr. We then introduce an integral transform as an analytic operator-valued Feynman integral over C r [0, t], and evaluate the integral transform for the function Γt via the conditional analytic Feynman integral as a kernel.
LA - eng
KW - Analogue of Wiener measure; Conditional analytic Feynman integral; Conditional analytic Wiener integral; Operator-valued Feynman integral; Simple formula for conditional expectation; Wiener space; analogue of Wiener measure; conditional analytic Feynman integral; conditional analytic Wiener integral; operator-valued Feynman integral; simple formula for conditional expectation
UR - http://eudml.org/doc/269685
ER -
References
top- [1] Ash R.B., Real Analysis and Probability, Probability and Mathematical Statistics, 11, Academic Press, New York-London, 1972
- [2] Cameron R.H., The translation pathology of Wiener space, Duke Math. J., 1954, 21, 623–627 http://dx.doi.org/10.1215/S0012-7094-54-02165-1 Zbl0057.09601
- [3] Cameron R.H., Storvick D.A., An operator valued function space integral and a related integral equation, J. Math. Mech., 1968, 18(6), 517–552 Zbl0186.20701
- [4] Cameron R.H., Storvick D.A., An operator-valued function-space integral applied to integrals of functions of class L 1, Proc. Lond. Math. Soc., 1973, 27(2), 345–360 http://dx.doi.org/10.1112/plms/s3-27.2.345 Zbl0264.28005
- [5] Cameron R.H., Storvick D.A., Some Banach algebras of analytic Feynman integrable functionals, In: Analytic Functions, Kozubnik 1979, Lecture Notes in Math., 798, Springer, Berlin-New York, 1980, 18–67 http://dx.doi.org/10.1007/BFb0097256
- [6] Chang K.S., Cho D.H., Song T.S., Yoo I., A conditional analytic Feynman integral over Wiener paths in abstract Wiener space, Int. Math. J., 2002, 2(9), 855–870 Zbl1275.28015
- [7] Chang K.S., Cho D.H., Yoo I., Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space, Czechoslovak Math. J., 2004, 54(129)(1), 161–180 http://dx.doi.org/10.1023/B:CMAJ.0000027256.06816.1a Zbl1047.28008
- [8] Cho D.H., Integral transform as operator-valued Feynman integrals via conditional Feynman integrals over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct., 2005, 16(2), 107–130 http://dx.doi.org/10.1080/10652460410001672988 Zbl1147.28301
- [9] Cho D.H., A simple formula for an analogue of conditional Wiener integrals and its applications, Trans. Amer. Math. Soc., 2008, 360(7), 3795–3811 http://dx.doi.org/10.1090/S0002-9947-08-04380-8 Zbl1151.28017
- [10] Cho D.H., Conditional Feynman integral and Schrödinger integral equation on a function space, Bull. Aust. Math. Soc., 2009, 79(1), 1–22 http://dx.doi.org/10.1017/S0004972708000920 Zbl1215.28012
- [11] Cho D.H., Evaluation formulas for an analogue of conditional analytic Feynman integrals over a function space, preprint Zbl1233.28006
- [12] Chung D.M., Park C., Skoug D., Operator-valued Feynman integrals via conditional Feynman integrals, Pacific J. Math., 1990, 146(1), 21–42 Zbl0732.28008
- [13] Im M.K., Ryu K.S., An analogue of Wiener measure and its applications, J. Korean Math. Soc., 2002, 39(5), 801–819 http://dx.doi.org/10.4134/JKMS.2002.39.5.801 Zbl1017.28007
- [14] Johnson G.W., Lapidus M.L., Generalized Dyson Series, Generalized Feynman Diagrams, the Feynman Integral and Feynman’s Operational Calculus, Mem. Amer. Math. Soc., 351, AMS, Providence, 1986 Zbl0638.28009
- [15] Johnson G.W., Skoug D.L., The Cameron-Storvick function space integral: the L 1 theory, J. Math. Anal. Appl., 1975, 50(3), 647–667 http://dx.doi.org/10.1016/0022-247X(75)90017-7
- [16] Kuo H.H., Gaussian Measures in Banach Spaces, Lecture Notes in Math., 463, Springer, Berlin-New York, 1975 Zbl0306.28010
- [17] Laha R.G., Rohatgi V.K., Probability Theory, Wiley Ser. Probab. Stat., Wiley & Sons, New York-Chichester-Brisbane, 1979
- [18] Ryu K.S., The Wiener integral over paths in abstract Wiener space, J. Korean Math. Soc., 1992, 29(2), 317–331 Zbl0768.28005
- [19] Ryu K.S., Im M.K., A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc., 2002, 354(12), 4921–4951 http://dx.doi.org/10.1090/S0002-9947-02-03077-5 Zbl1017.28008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.