On a generalization of duality triads

Matthias Schork

Open Mathematics (2006)

  • Volume: 4, Issue: 2, page 304-318
  • ISSN: 2391-5455

Abstract

top
Some aspects of duality triads introduced recently are discussed. In particular, the general solution for the triad polynomials is given. Furthermore, a generalization of the notion of duality triad is proposed and some simple properties of these generalized duality triads are derived.

How to cite

top

Matthias Schork. "On a generalization of duality triads." Open Mathematics 4.2 (2006): 304-318. <http://eudml.org/doc/269718>.

@article{MatthiasSchork2006,
abstract = {Some aspects of duality triads introduced recently are discussed. In particular, the general solution for the triad polynomials is given. Furthermore, a generalization of the notion of duality triad is proposed and some simple properties of these generalized duality triads are derived.},
author = {Matthias Schork},
journal = {Open Mathematics},
keywords = {05Axx; 11B37; 11B83},
language = {eng},
number = {2},
pages = {304-318},
title = {On a generalization of duality triads},
url = {http://eudml.org/doc/269718},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Matthias Schork
TI - On a generalization of duality triads
JO - Open Mathematics
PY - 2006
VL - 4
IS - 2
SP - 304
EP - 318
AB - Some aspects of duality triads introduced recently are discussed. In particular, the general solution for the triad polynomials is given. Furthermore, a generalization of the notion of duality triad is proposed and some simple properties of these generalized duality triads are derived.
LA - eng
KW - 05Axx; 11B37; 11B83
UR - http://eudml.org/doc/269718
ER -

References

top
  1. [1] G.E. Andrews: The Theory of Partitions, Addison Wesley, Reading, 1976. 
  2. [2] G. Bach: “Über eine Verallgemeinerung der Differenzengleichung der Stirlingschen Zahlen 2.Art und einige damit zusammenhängende Fragen”, J. Reine Angew. Math., Vol. 233, (1968), pp. 213–220. Zbl0169.31902
  3. [3] P. Blasiak, K.A. Penson and A.I. Solomon: “The Boson Normal Ordering Problem and Generalized Bell Numbers”, Ann. Comb., Vol. 7, (2003), pp. 127–139. http://dx.doi.org/10.1007/s00026-003-0177-z Zbl1030.81004
  4. [4] E. Borak: “A note on special duality triads and their operator valued counterparts”, Preprint: arXiv:math.CO/0411041. 
  5. [5] L. Comtet: Advanced Combinatorics, Reidel, Dordrecht, 1974. 
  6. [6] L. Comtet: “Nombres de Stirling généraux et fonctions symétriques,” C. R. Acad. Sc. Paris, Vol. 275, (1972), pp. 747–750. Zbl0246.05006
  7. [7] P. Feinsilver and R. Schott: Algebraic structures and operator calculus. Vol. II: Special functions and computer science, Kluwer Academic Publishers, Dordrecht, 1994. Zbl1128.33300
  8. [8] I. Jaroszewski and A.K. Kwásniewski: “On the principal recurrence of data structures organization and orthogonal polynomials”, Integral Transforms Spec. Funct., Vol. 11, (2001), pp. 1–12. Zbl0982.68049
  9. [9] J. Konvalina: “Generalized binomial coefficients and the subset-subspace problem”, Adv. Math., Vol. 21, (1998), pp. 228–240. Zbl0936.05003
  10. [10] J. Konvalina: “A unified interpretation of the Binomial Coefficients, the Stirling Numbers and Gaussian Coefficents,” Amer. Math. Monthly, Vol. 107, (2000), pp. 901–910. Zbl0987.05004
  11. [11] A.K. Kwaśniewski: “On duality triads,” Bull. Soc. Sci. Lettres Łódź, Vol. A 53, Ser. Rech. Déform. 42, (2003), pp. 11–25. Zbl1152.11306
  12. [12] A.K. Kwaśniewski: “On Fibonomial and other triangles versus duality triads”, Bull. Soc. Sci. Lettres Łódź, Vol. A 53, Ser. Rech. Déform. 42, (2003), pp. 27–37. Zbl1152.11307
  13. [13] A.K. Kwaśniewski: “Fibonomial Cumulative Connection Constants”, Bulletin of the ICA, Vol. 44, (2005), pp. 81–92. Zbl1075.11010
  14. [14] M. Schork: “Some remarks on duality triads”, Adv. Stud. Contemp. Math., to appear. Zbl1102.11010
  15. [15] R.P. Stanley: Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999. Zbl0928.05001
  16. [16] B. Voigt: “A common generalization of binomial coefficients, Stirling numbers and Gaussian coefficents”, Publ. I.R.M.A. Strasbourg, Actes 8 e Séminaire Lotharingien, Vol. 229/S-08, (1984), pp. 87–89. 
  17. [17] W. Woan: “A Recursive Relation for Weighted Motzkin Sequences”, J. Integer Seq., Vol. 8, (2005), art. 05.1.6. Zbl1065.05012
  18. [18] S. Wolfram: A new kind of science, Wolfram Media, Champaign, 2002. Zbl1022.68084

NotesEmbed ?

top

You must be logged in to post comments.