Anisotropic interpolation error estimates via orthogonal expansions
Open Mathematics (2013)
- Volume: 11, Issue: 4, page 621-629
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Acosta G., Apel T., Durán R.G., Lombardi A.L., Anisotropic error estimates for an interpolant defined via moments, Computing, 2008, 82(1), 1–9 http://dx.doi.org/10.1007/s00607-008-0259-1 Zbl1154.65007
- [2] Apel T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Stuttgart, 1999 Zbl0917.65090
- [3] Apel T., Dobrowolski M., Anisotropic interpolation with applications to the finite element method, Computing, 1992, 47(3–4), 277–293 http://dx.doi.org/10.1007/BF02320197 Zbl0746.65077
- [4] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Texts Appl. Math., 15, Springer, New York, 1994 Zbl0804.65101
- [5] Chen S., Shi D., Zhao Y., Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes, IMA J. Numer. Anal., 2004, 24(1), 77–95 http://dx.doi.org/10.1093/imanum/24.1.77 Zbl1049.65129
- [6] Chen S., Zheng Y., Mao S., Anisotropic error bounds of Lagrange interpolation with any order in two and three dimensions, Appl. Math. Comput., 2011, 217(22), 9313–9321 http://dx.doi.org/10.1016/j.amc.2011.04.015 Zbl1222.41004
- [7] Ciarlet P.G., The Finite Element Method for Elliptic Problems, Stud. Math. Appl., 4, North-Holland, Amsterdam-New York-Oxford, 1978 Zbl0383.65058
- [8] Girault V., Raviart P.-A., Finite Element Methods for Navier-Stokes equations, Springer Ser. Comput. Math., 5, Springer, Berlin, 1986 Zbl0413.65081
- [9] Hannukainen A., Korotov S., Křížek M., The maximum angle condition is not necessary for convergence of the finite element method, Numer. Math., 2012, 120(1), 79–88 http://dx.doi.org/10.1007/s00211-011-0403-2 Zbl1255.65196
- [10] Křížek M., On semiregular families of triangulations and linear interpolation, Appl. Math., 1991, 36(3), 223–232 Zbl0728.41003
- [11] Luke Y.L., The Special Functions and their Approximations I, Math. Sci. Eng., 53, Academic Press, New York-London, 1969 Zbl0193.01701
- [12] Mao S., Shi Z., Error estimates of triangular finite elements under a weak angle condition, J. Comput. Appl. Math., 2009, 230(1), 329–331 http://dx.doi.org/10.1016/j.cam.2008.11.008 Zbl1168.65063
- [13] Sansone G., Orthogonal Functions, Dover, New York, 1991