Anisotropic interpolation error estimates via orthogonal expansions

Mingxia Li; Shipeng Mao

Open Mathematics (2013)

  • Volume: 11, Issue: 4, page 621-629
  • ISSN: 2391-5455

Abstract

top
We prove anisotropic interpolation error estimates for quadrilateral and hexahedral elements with all possible shape function spaces, which cover the intermediate families, tensor product families and serendipity families. Moreover, we show that the anisotropic interpolation error estimates hold for derivatives of any order. This goal is accomplished by investigating an interpolation defined via orthogonal expansions.

How to cite

top

Mingxia Li, and Shipeng Mao. "Anisotropic interpolation error estimates via orthogonal expansions." Open Mathematics 11.4 (2013): 621-629. <http://eudml.org/doc/269724>.

@article{MingxiaLi2013,
abstract = {We prove anisotropic interpolation error estimates for quadrilateral and hexahedral elements with all possible shape function spaces, which cover the intermediate families, tensor product families and serendipity families. Moreover, we show that the anisotropic interpolation error estimates hold for derivatives of any order. This goal is accomplished by investigating an interpolation defined via orthogonal expansions.},
author = {Mingxia Li, Shipeng Mao},
journal = {Open Mathematics},
keywords = {Error estimates; Anisotropic interpolation; Orthogonal expansions; quadrilateral; hexahedron; mesh; Lobatto polynomials; maximum angle condition; coordinate system condition; anisotropic interpolation operator; finite elements},
language = {eng},
number = {4},
pages = {621-629},
title = {Anisotropic interpolation error estimates via orthogonal expansions},
url = {http://eudml.org/doc/269724},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Mingxia Li
AU - Shipeng Mao
TI - Anisotropic interpolation error estimates via orthogonal expansions
JO - Open Mathematics
PY - 2013
VL - 11
IS - 4
SP - 621
EP - 629
AB - We prove anisotropic interpolation error estimates for quadrilateral and hexahedral elements with all possible shape function spaces, which cover the intermediate families, tensor product families and serendipity families. Moreover, we show that the anisotropic interpolation error estimates hold for derivatives of any order. This goal is accomplished by investigating an interpolation defined via orthogonal expansions.
LA - eng
KW - Error estimates; Anisotropic interpolation; Orthogonal expansions; quadrilateral; hexahedron; mesh; Lobatto polynomials; maximum angle condition; coordinate system condition; anisotropic interpolation operator; finite elements
UR - http://eudml.org/doc/269724
ER -

References

top
  1. [1] Acosta G., Apel T., Durán R.G., Lombardi A.L., Anisotropic error estimates for an interpolant defined via moments, Computing, 2008, 82(1), 1–9 http://dx.doi.org/10.1007/s00607-008-0259-1 Zbl1154.65007
  2. [2] Apel T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Stuttgart, 1999 Zbl0917.65090
  3. [3] Apel T., Dobrowolski M., Anisotropic interpolation with applications to the finite element method, Computing, 1992, 47(3–4), 277–293 http://dx.doi.org/10.1007/BF02320197 Zbl0746.65077
  4. [4] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Texts Appl. Math., 15, Springer, New York, 1994 Zbl0804.65101
  5. [5] Chen S., Shi D., Zhao Y., Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes, IMA J. Numer. Anal., 2004, 24(1), 77–95 http://dx.doi.org/10.1093/imanum/24.1.77 Zbl1049.65129
  6. [6] Chen S., Zheng Y., Mao S., Anisotropic error bounds of Lagrange interpolation with any order in two and three dimensions, Appl. Math. Comput., 2011, 217(22), 9313–9321 http://dx.doi.org/10.1016/j.amc.2011.04.015 Zbl1222.41004
  7. [7] Ciarlet P.G., The Finite Element Method for Elliptic Problems, Stud. Math. Appl., 4, North-Holland, Amsterdam-New York-Oxford, 1978 Zbl0383.65058
  8. [8] Girault V., Raviart P.-A., Finite Element Methods for Navier-Stokes equations, Springer Ser. Comput. Math., 5, Springer, Berlin, 1986 Zbl0413.65081
  9. [9] Hannukainen A., Korotov S., Křížek M., The maximum angle condition is not necessary for convergence of the finite element method, Numer. Math., 2012, 120(1), 79–88 http://dx.doi.org/10.1007/s00211-011-0403-2 Zbl1255.65196
  10. [10] Křížek M., On semiregular families of triangulations and linear interpolation, Appl. Math., 1991, 36(3), 223–232 Zbl0728.41003
  11. [11] Luke Y.L., The Special Functions and their Approximations I, Math. Sci. Eng., 53, Academic Press, New York-London, 1969 Zbl0193.01701
  12. [12] Mao S., Shi Z., Error estimates of triangular finite elements under a weak angle condition, J. Comput. Appl. Math., 2009, 230(1), 329–331 http://dx.doi.org/10.1016/j.cam.2008.11.008 Zbl1168.65063
  13. [13] Sansone G., Orthogonal Functions, Dover, New York, 1991 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.