On semiregular families of triangulations and linear interpolation
Applications of Mathematics (1991)
- Volume: 36, Issue: 3, page 223-232
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKřížek, Michal. "On semiregular families of triangulations and linear interpolation." Applications of Mathematics 36.3 (1991): 223-232. <http://eudml.org/doc/15675>.
@article{Křížek1991,
abstract = {We consider triangulations formed by triangular elements. For the standard linear interpolation operator $\pi __h$ we prove the interpolation order to be $\left\Vert v-\{\pi __h\} v\right\Vert _\{1,p\}\le Ch\left|v\right|_\{2,p\}$ for $p>1$ provided the corresponding family of triangulations is only semiregular. In such a case the well-known Zlámal’s condition upon the minimum angle need not be satisfied.},
author = {Křížek, Michal},
journal = {Applications of Mathematics},
keywords = {finite elements; linear interpolation; maximum angle condition; Zlámal’s condition; Zlámal’s condition},
language = {eng},
number = {3},
pages = {223-232},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On semiregular families of triangulations and linear interpolation},
url = {http://eudml.org/doc/15675},
volume = {36},
year = {1991},
}
TY - JOUR
AU - Křížek, Michal
TI - On semiregular families of triangulations and linear interpolation
JO - Applications of Mathematics
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 3
SP - 223
EP - 232
AB - We consider triangulations formed by triangular elements. For the standard linear interpolation operator $\pi __h$ we prove the interpolation order to be $\left\Vert v-{\pi __h} v\right\Vert _{1,p}\le Ch\left|v\right|_{2,p}$ for $p>1$ provided the corresponding family of triangulations is only semiregular. In such a case the well-known Zlámal’s condition upon the minimum angle need not be satisfied.
LA - eng
KW - finite elements; linear interpolation; maximum angle condition; Zlámal’s condition; Zlámal’s condition
UR - http://eudml.org/doc/15675
ER -
References
top- I. Babuška A. K. Aziz, 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) MR0455462DOI10.1137/0713021
- R. E. Barnhill J. A. Gregory, Sard kernel theorems on triangular domains with application to finite element error bounds, Numer. Math. 25 (1976), 215-229. (1976) MR0458000
- P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
- J. A. Gregory, Error bounds for linear interpolation on triangles, (in Proc. MAFELAP II, ed. J. R. Whiteman). Academic Press, London, 1976, 163-170. (1976) MR0458795
- P. Jamet, Estimations d'erreur pour des éléments finis droits presque dégénérés, RAIRO Anal. Numér. 10 (1976), 43-60. (1976) MR0455282
- P. Jamet, Estimations de l'erreur d'interpolation dans un domaine variable et applications aux éléments finis quadrilatéraux dégénérés, Méthodes Numériques en Mathématiques Appliquées, Presses de l'Université de Montreal, 55-100. MR0445863
- M. Křížek, On semiregular families of decompositions of a polyhedron into tetrahedra and linear interpolation, (in Proc. of the 6th Conf. Mathematical Methods in Engineering). ŠKODA, Plzeň, 1991, 269-274. (1991)
- M. Křížek P. Neittaanmäki, Finite element approximation of variational problems and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics vol. 50, Longman Scientific & Technical, Harlow, 1990. (1990) MR1066462
- J. Nečas, Les rnéthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
- G. Strang G. J. Fix, An analysis of the finite element method, Prentice-Hall, INC., New Jersey, London, 1973. (1973) MR0443377
- J. L. Synge, The hypercircle in mathematical physics, Cambridge University Press, Cambridge, 1957. (1957) Zbl0079.13802MR0097605
- A. Ženíšek, The convergence of the finite element method for boundary value problems of a system of elliptic equations, Apl. Mat. 14 (1969), 355- 377. (1969) MR0245978
- M. Zlámal, 10.1007/BF02161362, Numer. Math. 12 (1968), 394-409. (1968) MR0243753DOI10.1007/BF02161362
Citations in EuDML Documents
top- Francisco Perdomo, Ángel Plaza, Properties of triangulations obtained by the longest-edge bisection
- Mingxia Li, Shipeng Mao, Anisotropic interpolation error estimates via orthogonal expansions
- Aleš Prachař, On discontinuous Galerkin method and semiregular family of triangulations
- Alexander Ženíšek, Finite element variational crimes in the case of semiregular elements
- Alexander Ženíšek, Jana Hoderová-Zlámalová, Semiregular hermite tetrahedral finite elements
- Peter Oswald, Divergence of FEM: Babuška-Aziz triangulations revisited
- Zdeněk Milka, Finite element solution of a stationary heat conduction equation with the radiation boundary condition
- Jana Zlámalová, Semiregular finite elements in solving some nonlinear problems
- Kenta Kobayashi, Takuya Tsuchiya, Error estimation for finite element solutions on meshes that contain thin elements
- Kenta Kobayashi, Takuya Tsuchiya, A priori error estimates for Lagrange interpolation on triangles
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.