On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions

Manfred Kühleitner; Werner Nowak

Open Mathematics (2013)

  • Volume: 11, Issue: 3, page 477-486
  • ISSN: 2391-5455

Abstract

top
The paper deals with lower bounds for the remainder term in asymptotics for a certain class of arithmetic functions. Typically, these are generated by a Dirichlet series of the form ζ 2(s)ζ(2s−1)ζ M(2s)H(s), where M is an arbitrary integer and H(s) has an Euler product which converges absolutely for R s > σ0, with some fixed σ0 < 1/2.

How to cite

top

Manfred Kühleitner, and Werner Nowak. "On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions." Open Mathematics 11.3 (2013): 477-486. <http://eudml.org/doc/269728>.

@article{ManfredKühleitner2013,
abstract = {The paper deals with lower bounds for the remainder term in asymptotics for a certain class of arithmetic functions. Typically, these are generated by a Dirichlet series of the form ζ 2(s)ζ(2s−1)ζ M(2s)H(s), where M is an arbitrary integer and H(s) has an Euler product which converges absolutely for R s > σ0, with some fixed σ0 < 1/2.},
author = {Manfred Kühleitner, Werner Nowak},
journal = {Open Mathematics},
keywords = {Arithmetic functions; Asymptotic formulas; Omega estimates; arithmetic functions; asymptotic formulas; omega estimates},
language = {eng},
number = {3},
pages = {477-486},
title = {On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions},
url = {http://eudml.org/doc/269728},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Manfred Kühleitner
AU - Werner Nowak
TI - On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 477
EP - 486
AB - The paper deals with lower bounds for the remainder term in asymptotics for a certain class of arithmetic functions. Typically, these are generated by a Dirichlet series of the form ζ 2(s)ζ(2s−1)ζ M(2s)H(s), where M is an arbitrary integer and H(s) has an Euler product which converges absolutely for R s > σ0, with some fixed σ0 < 1/2.
LA - eng
KW - Arithmetic functions; Asymptotic formulas; Omega estimates; arithmetic functions; asymptotic formulas; omega estimates
UR - http://eudml.org/doc/269728
ER -

References

top
  1. [1] Balasubramanian R., Ramachandra K., Subbarao M.V., On the error function in the asymptotic formula for the counting function of k-full numbers, Acta Arith., 1988, 50(2), 107–118 Zbl0652.10033
  2. [2] Huxley M.N., Area, Lattice Points, and Exponential Sums, London Math. Soc. Monogr. (N.S.), 13, Oxford University Press, New York, 1996 Zbl0861.11002
  3. [3] Huxley M.N., Exponential sums and lattice points. III, Proc. London Math. Soc., 2003, 87(3), 591–609 http://dx.doi.org/10.1112/S0024611503014485[Crossref] Zbl1065.11079
  4. [4] Huxley M.N., Exponential sums and the Riemann zeta-function. V, Proc. London Math. Soc., 2005, 90(1), 1–41 http://dx.doi.org/10.1112/S0024611504014959[Crossref] Zbl1083.11052
  5. [5] Ivic A., The Riemann Zeta-Function, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1985 Zbl0556.10026
  6. [6] Krätzel E., Lattice Points, Math. Appl. (East European Ser.), 33, Kluwer, Dordrecht, 1988 
  7. [7] Krätzel E., Nowak W.G., Tóth L., On certain arithmetic functions involving the greatest common divisor, Cent. Eur. J. Math., 2012, 10(2), 761–774 http://dx.doi.org/10.2478/s11533-011-0144-6[Crossref][WoS] Zbl1285.11120
  8. [8] Krätzel E., Nowak W.G., Tóth L., On a class of arithmetic functions connected with a certain asymmetric divisor problem, In: 20th Czech and Slovak International Conference on Number Theory, Stará Lesná, September 5–9, 2011 (abstracts), Slovak Academy of Sciences, Bratislava, 14–15 
  9. [9] Kühleitner M., An Omega theorem on Pythagorean triples, Abh. Math. Sem. Univ. Hamburg, 1993, 63, 105–113 http://dx.doi.org/10.1007/BF02941336[Crossref] Zbl0795.11045
  10. [10] Kühleitner M., Nowak W.G., An Omega theorem for a class of arithmetic functions, Math. Nachr., 1994, 165, 79–98 http://dx.doi.org/10.1002/mana.19941650107[Crossref] Zbl0835.11036
  11. [11] Kühleitner M., Nowak W.G., The average number of solutions of the Diophantine equation U 2 + V 2 = W 3 and related arithmetic functions, Acta Math. Hungar., 2004, 104(3), 225–240 http://dx.doi.org/10.1023/B:AMHU.0000036284.91580.3e[Crossref] Zbl1060.11058
  12. [12] Montgomery H.L., Vaughan R.C., Hilbert’s inequality, J. London Math. Soc., 1974, 8, 73–82 http://dx.doi.org/10.1112/jlms/s2-8.1.73[Crossref] 
  13. [13] Prachar K., Primzahlverteilung, Springer, Berlin-Göttingen-Heidelberg, 1957 
  14. [14] Ramachandra K., A large value theorem for ζ(s), Hardy-Ramanujan J., 1995, 18, 1–9 
  15. [15] Ramachandra K., Sankaranarayanan A., On an asymptotic formula of Srinivasa Ramanujan, Acta Arith., 2003, 109(4), 349–357 http://dx.doi.org/10.4064/aa109-4-5[Crossref] Zbl1036.11045
  16. [16] Schinzel A., On an analytic problem considered by Sierpinski and Ramanujan, In: New Trends in Probability and Statistics, 2, Palanga, 1991, VSP, Utrecht, 1992, 165–171 Zbl0767.11045
  17. [17] Sloane N., On-Line Encyclopedia of Integer Sequences, #A055155, http://oeis.org/A055155 Zbl1274.11001
  18. [18] Sloane N., On-Line Encyclopedia of Integer Sequences, #A078430, http://oeis.org/A078430 Zbl1274.11001
  19. [19] Sloane N., On-Line Encyclopedia of Integer Sequences, #A124316, http://oeis.org/A124316 Zbl1274.11001
  20. [20] Soundararajan K., Omega results for the divisor and circle problems, Int. Math. Res. Notices, 2003, 36, 1987–1998 http://dx.doi.org/10.1155/S1073792803130309[Crossref] Zbl1130.11329
  21. [21] Szegö G., Beiträge zur Theorie der Laguerreschen Polynome. II: Zahlentheoretische Anwendungen, Math. Z., 1926, 25, 388–404 http://dx.doi.org/10.1007/BF01283847[Crossref] Zbl52.0175.03
  22. [22] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford University Press, Oxford, 1986 Zbl0601.10026
  23. [23] Tóth L., Menon’s identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 2011, 69(1), 97–110 Zbl1235.11011
  24. [24] Tóth L., Weighted gcd-sum functions, J. Integer Seq., 2011, 14(7), #11.7.7 Zbl1259.11014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.