On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions
Manfred Kühleitner; Werner Nowak
Open Mathematics (2013)
- Volume: 11, Issue: 3, page 477-486
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topManfred Kühleitner, and Werner Nowak. "On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions." Open Mathematics 11.3 (2013): 477-486. <http://eudml.org/doc/269728>.
@article{ManfredKühleitner2013,
abstract = {The paper deals with lower bounds for the remainder term in asymptotics for a certain class of arithmetic functions. Typically, these are generated by a Dirichlet series of the form ζ 2(s)ζ(2s−1)ζ M(2s)H(s), where M is an arbitrary integer and H(s) has an Euler product which converges absolutely for R s > σ0, with some fixed σ0 < 1/2.},
author = {Manfred Kühleitner, Werner Nowak},
journal = {Open Mathematics},
keywords = {Arithmetic functions; Asymptotic formulas; Omega estimates; arithmetic functions; asymptotic formulas; omega estimates},
language = {eng},
number = {3},
pages = {477-486},
title = {On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions},
url = {http://eudml.org/doc/269728},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Manfred Kühleitner
AU - Werner Nowak
TI - On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 477
EP - 486
AB - The paper deals with lower bounds for the remainder term in asymptotics for a certain class of arithmetic functions. Typically, these are generated by a Dirichlet series of the form ζ 2(s)ζ(2s−1)ζ M(2s)H(s), where M is an arbitrary integer and H(s) has an Euler product which converges absolutely for R s > σ0, with some fixed σ0 < 1/2.
LA - eng
KW - Arithmetic functions; Asymptotic formulas; Omega estimates; arithmetic functions; asymptotic formulas; omega estimates
UR - http://eudml.org/doc/269728
ER -
References
top- [1] Balasubramanian R., Ramachandra K., Subbarao M.V., On the error function in the asymptotic formula for the counting function of k-full numbers, Acta Arith., 1988, 50(2), 107–118 Zbl0652.10033
- [2] Huxley M.N., Area, Lattice Points, and Exponential Sums, London Math. Soc. Monogr. (N.S.), 13, Oxford University Press, New York, 1996 Zbl0861.11002
- [3] Huxley M.N., Exponential sums and lattice points. III, Proc. London Math. Soc., 2003, 87(3), 591–609 http://dx.doi.org/10.1112/S0024611503014485[Crossref] Zbl1065.11079
- [4] Huxley M.N., Exponential sums and the Riemann zeta-function. V, Proc. London Math. Soc., 2005, 90(1), 1–41 http://dx.doi.org/10.1112/S0024611504014959[Crossref] Zbl1083.11052
- [5] Ivic A., The Riemann Zeta-Function, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1985 Zbl0556.10026
- [6] Krätzel E., Lattice Points, Math. Appl. (East European Ser.), 33, Kluwer, Dordrecht, 1988
- [7] Krätzel E., Nowak W.G., Tóth L., On certain arithmetic functions involving the greatest common divisor, Cent. Eur. J. Math., 2012, 10(2), 761–774 http://dx.doi.org/10.2478/s11533-011-0144-6[Crossref][WoS] Zbl1285.11120
- [8] Krätzel E., Nowak W.G., Tóth L., On a class of arithmetic functions connected with a certain asymmetric divisor problem, In: 20th Czech and Slovak International Conference on Number Theory, Stará Lesná, September 5–9, 2011 (abstracts), Slovak Academy of Sciences, Bratislava, 14–15
- [9] Kühleitner M., An Omega theorem on Pythagorean triples, Abh. Math. Sem. Univ. Hamburg, 1993, 63, 105–113 http://dx.doi.org/10.1007/BF02941336[Crossref] Zbl0795.11045
- [10] Kühleitner M., Nowak W.G., An Omega theorem for a class of arithmetic functions, Math. Nachr., 1994, 165, 79–98 http://dx.doi.org/10.1002/mana.19941650107[Crossref] Zbl0835.11036
- [11] Kühleitner M., Nowak W.G., The average number of solutions of the Diophantine equation U 2 + V 2 = W 3 and related arithmetic functions, Acta Math. Hungar., 2004, 104(3), 225–240 http://dx.doi.org/10.1023/B:AMHU.0000036284.91580.3e[Crossref] Zbl1060.11058
- [12] Montgomery H.L., Vaughan R.C., Hilbert’s inequality, J. London Math. Soc., 1974, 8, 73–82 http://dx.doi.org/10.1112/jlms/s2-8.1.73[Crossref]
- [13] Prachar K., Primzahlverteilung, Springer, Berlin-Göttingen-Heidelberg, 1957
- [14] Ramachandra K., A large value theorem for ζ(s), Hardy-Ramanujan J., 1995, 18, 1–9
- [15] Ramachandra K., Sankaranarayanan A., On an asymptotic formula of Srinivasa Ramanujan, Acta Arith., 2003, 109(4), 349–357 http://dx.doi.org/10.4064/aa109-4-5[Crossref] Zbl1036.11045
- [16] Schinzel A., On an analytic problem considered by Sierpinski and Ramanujan, In: New Trends in Probability and Statistics, 2, Palanga, 1991, VSP, Utrecht, 1992, 165–171 Zbl0767.11045
- [17] Sloane N., On-Line Encyclopedia of Integer Sequences, #A055155, http://oeis.org/A055155 Zbl1274.11001
- [18] Sloane N., On-Line Encyclopedia of Integer Sequences, #A078430, http://oeis.org/A078430 Zbl1274.11001
- [19] Sloane N., On-Line Encyclopedia of Integer Sequences, #A124316, http://oeis.org/A124316 Zbl1274.11001
- [20] Soundararajan K., Omega results for the divisor and circle problems, Int. Math. Res. Notices, 2003, 36, 1987–1998 http://dx.doi.org/10.1155/S1073792803130309[Crossref] Zbl1130.11329
- [21] Szegö G., Beiträge zur Theorie der Laguerreschen Polynome. II: Zahlentheoretische Anwendungen, Math. Z., 1926, 25, 388–404 http://dx.doi.org/10.1007/BF01283847[Crossref] Zbl52.0175.03
- [22] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford University Press, Oxford, 1986 Zbl0601.10026
- [23] Tóth L., Menon’s identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 2011, 69(1), 97–110 Zbl1235.11011
- [24] Tóth L., Weighted gcd-sum functions, J. Integer Seq., 2011, 14(7), #11.7.7 Zbl1259.11014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.