A cohomological index of Fuller type for parameterized set-valued maps in normed spaces

Robert Skiba

Open Mathematics (2014)

  • Volume: 12, Issue: 8, page 1164-1197
  • ISSN: 2391-5455

Abstract

top
We construct a cohomological index of the Fuller type for set-valued flows in normed linear spaces satisfying the properties of existence, excision, additivity, homotopy and topological invariance. In particular, the constructed index detects periodic orbits and stationary points of set-valued dynamical systems, i.e., those generated by differential inclusions. The basic methods to calculate the index are also presented.

How to cite

top

Robert Skiba. "A cohomological index of Fuller type for parameterized set-valued maps in normed spaces." Open Mathematics 12.8 (2014): 1164-1197. <http://eudml.org/doc/269737>.

@article{RobertSkiba2014,
abstract = {We construct a cohomological index of the Fuller type for set-valued flows in normed linear spaces satisfying the properties of existence, excision, additivity, homotopy and topological invariance. In particular, the constructed index detects periodic orbits and stationary points of set-valued dynamical systems, i.e., those generated by differential inclusions. The basic methods to calculate the index are also presented.},
author = {Robert Skiba},
journal = {Open Mathematics},
keywords = {Fixed points of parameterized maps; Periodic orbit; Stationary point; Fixed point index; Fuller index; fixed point; parametrized map; fixed point index; periodic point},
language = {eng},
number = {8},
pages = {1164-1197},
title = {A cohomological index of Fuller type for parameterized set-valued maps in normed spaces},
url = {http://eudml.org/doc/269737},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Robert Skiba
TI - A cohomological index of Fuller type for parameterized set-valued maps in normed spaces
JO - Open Mathematics
PY - 2014
VL - 12
IS - 8
SP - 1164
EP - 1197
AB - We construct a cohomological index of the Fuller type for set-valued flows in normed linear spaces satisfying the properties of existence, excision, additivity, homotopy and topological invariance. In particular, the constructed index detects periodic orbits and stationary points of set-valued dynamical systems, i.e., those generated by differential inclusions. The basic methods to calculate the index are also presented.
LA - eng
KW - Fixed points of parameterized maps; Periodic orbit; Stationary point; Fixed point index; Fuller index; fixed point; parametrized map; fixed point index; periodic point
UR - http://eudml.org/doc/269737
ER -

References

top
  1. [1] Chicone C., Ordinary Differential Equations with Applications, 2nd ed., Texts Appl. Math., 34, Springer, New York, 2006 Zbl1120.34001
  2. [2] Chow S.N., Mallet-Paret J., The Fuller index and global Hopf bifurcation, J. Differential Equations, 1978, 29(1), 66–84 http://dx.doi.org/10.1016/0022-0396(78)90041-4 Zbl0369.34020
  3. [3] Crabb M.C., Potter A.J.B., The Fuller index, In: Invitations to Geometry and Topology, Oxf. Grad. Texts Math., 7, Oxford University Press, 2002, 92–125 Zbl0996.54506
  4. [4] Dold A., Lectures on Algebraic Topology, Grundlehren Math. Wiss., 200, Springer, New York-Berlin, 1972 http://dx.doi.org/10.1007/978-3-662-00756-3 
  5. [5] Dold A., The fixed point index of fibre-preserving maps, Invent. Math., 1974, 25(3–4), 281–297 http://dx.doi.org/10.1007/BF01389731 Zbl0284.55007
  6. [6] Dold A., The fixed point transfer of fibre-preserving maps, Math. Z., 1976, 148(3), 215–244 http://dx.doi.org/10.1007/BF01214520 Zbl0329.55007
  7. [7] Fenske C.C., A simple-minded approach to the index of periodic orbits, J. Math. Anal. Appl., 1988, 129(2), 517–532 http://dx.doi.org/10.1016/0022-247X(88)90269-7 
  8. [8] Fenske C.C., An index for periodic orbits of functional-differential equations, Math. Ann., 1989, 285(3), 381–392 http://dx.doi.org/10.1007/BF01455063 Zbl0663.34057
  9. [9] Fenske C.C., A direct topological definition of the Fuller index for local semiflows, Topol. Methods Nonlinear Anal., 2003, 21(2), 195–209 Zbl1035.37016
  10. [10] Franzosa R.D., An homology index generalizing Fuller’s index for periodic orbits, J. Differential Equations, 1990, 84(1), 1–14 http://dx.doi.org/10.1016/0022-0396(90)90124-8 Zbl0706.58055
  11. [11] Fuller F.B., An index of fixed point type for periodic orbits, Amer. J. Math., 1967, 89, 133–148 http://dx.doi.org/10.2307/2373103 Zbl0152.40204
  12. [12] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., 495, Kluwer, Dordrecht, 1999 http://dx.doi.org/10.1007/978-94-015-9195-9 Zbl0937.55001
  13. [13] Granas A., Dugundji J., Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003 http://dx.doi.org/10.1007/978-0-387-21593-8 Zbl1025.47002
  14. [14] Hatcher A., Algebraic Topology, Cambridge University Press, Cambridge, 2002 
  15. [15] Kryszewski W., Homotopy Properties of Set-Valued Mappings, Nicolaus Copernicus University, Torun, 1997 Zbl1250.54022
  16. [16] Kryszewski W., Skiba R., A cohomological index of Fuller type for set-valued dynamical systems, Nonlinear Anal., 2012, 75(2), 684–716 http://dx.doi.org/10.1016/j.na.2011.09.002 Zbl1232.54023
  17. [17] Lang S., Introduction to Differentiable Manifolds, 2nd ed., Universitext, Springer, New York, 2002 Zbl1008.57001
  18. [18] Lee J.M., Introduction to Smooth Manifolds, Grad. Texts in Math., 218, Springer, New York, 2003 
  19. [19] Massey W.S., Homology and Cohomology Theory, Monogr. Textbooks Pure Appl. Math., 46, Marcel Dekker, New York-Basel, 1978 
  20. [20] Potter A.J.B., On a generalization of the Fuller index, In: Nonlinear Functional Analysis and its Applications, 2, Proc. Sympos. Pure Math., 45, American Mathematical Society, Providence, 1986, 283–286 http://dx.doi.org/10.1090/pspum/045.2/843615 
  21. [21] Potter A.J.B., Approximation methods and the generalised Fuller index for semiflows in Banach spaces, Proc. Edinburgh Math. Soc., 1986, 29(3), 299–308 http://dx.doi.org/10.1017/S0013091500017740 Zbl0606.34043
  22. [22] Prasolov V.V., Elements of Homology Theory, Grad. Stud. Math., 81, American Mathematical Society, Providence, 2007 Zbl1120.55001
  23. [23] Spanier E.H., Algebraic Topology, McGraw-Hill, New York, 1966 
  24. [24] Srzednicki R., Periodic orbits indices, Fund. Math., 1990, 135(3), 147–173 Zbl0715.55005
  25. [25] Srzednicki R., The fixed point homomorphism of parametrized mappings of ANR’s and the modified fuller index, Ruhr-Universität Bochum, Preprint No. 143/1990 
  26. [26] Srzednicki R., Fixed point homomorphisms for parameterized maps, J. Fixed Point Theory Appl., 2013, 13(2), 489–518 http://dx.doi.org/10.1007/s11784-013-0131-6 Zbl1285.55002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.