A cohomological index of Fuller type for parameterized set-valued maps in normed spaces
Open Mathematics (2014)
- Volume: 12, Issue: 8, page 1164-1197
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topRobert Skiba. "A cohomological index of Fuller type for parameterized set-valued maps in normed spaces." Open Mathematics 12.8 (2014): 1164-1197. <http://eudml.org/doc/269737>.
@article{RobertSkiba2014,
abstract = {We construct a cohomological index of the Fuller type for set-valued flows in normed linear spaces satisfying the properties of existence, excision, additivity, homotopy and topological invariance. In particular, the constructed index detects periodic orbits and stationary points of set-valued dynamical systems, i.e., those generated by differential inclusions. The basic methods to calculate the index are also presented.},
author = {Robert Skiba},
journal = {Open Mathematics},
keywords = {Fixed points of parameterized maps; Periodic orbit; Stationary point; Fixed point index; Fuller index; fixed point; parametrized map; fixed point index; periodic point},
language = {eng},
number = {8},
pages = {1164-1197},
title = {A cohomological index of Fuller type for parameterized set-valued maps in normed spaces},
url = {http://eudml.org/doc/269737},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Robert Skiba
TI - A cohomological index of Fuller type for parameterized set-valued maps in normed spaces
JO - Open Mathematics
PY - 2014
VL - 12
IS - 8
SP - 1164
EP - 1197
AB - We construct a cohomological index of the Fuller type for set-valued flows in normed linear spaces satisfying the properties of existence, excision, additivity, homotopy and topological invariance. In particular, the constructed index detects periodic orbits and stationary points of set-valued dynamical systems, i.e., those generated by differential inclusions. The basic methods to calculate the index are also presented.
LA - eng
KW - Fixed points of parameterized maps; Periodic orbit; Stationary point; Fixed point index; Fuller index; fixed point; parametrized map; fixed point index; periodic point
UR - http://eudml.org/doc/269737
ER -
References
top- [1] Chicone C., Ordinary Differential Equations with Applications, 2nd ed., Texts Appl. Math., 34, Springer, New York, 2006 Zbl1120.34001
- [2] Chow S.N., Mallet-Paret J., The Fuller index and global Hopf bifurcation, J. Differential Equations, 1978, 29(1), 66–84 http://dx.doi.org/10.1016/0022-0396(78)90041-4 Zbl0369.34020
- [3] Crabb M.C., Potter A.J.B., The Fuller index, In: Invitations to Geometry and Topology, Oxf. Grad. Texts Math., 7, Oxford University Press, 2002, 92–125 Zbl0996.54506
- [4] Dold A., Lectures on Algebraic Topology, Grundlehren Math. Wiss., 200, Springer, New York-Berlin, 1972 http://dx.doi.org/10.1007/978-3-662-00756-3
- [5] Dold A., The fixed point index of fibre-preserving maps, Invent. Math., 1974, 25(3–4), 281–297 http://dx.doi.org/10.1007/BF01389731 Zbl0284.55007
- [6] Dold A., The fixed point transfer of fibre-preserving maps, Math. Z., 1976, 148(3), 215–244 http://dx.doi.org/10.1007/BF01214520 Zbl0329.55007
- [7] Fenske C.C., A simple-minded approach to the index of periodic orbits, J. Math. Anal. Appl., 1988, 129(2), 517–532 http://dx.doi.org/10.1016/0022-247X(88)90269-7
- [8] Fenske C.C., An index for periodic orbits of functional-differential equations, Math. Ann., 1989, 285(3), 381–392 http://dx.doi.org/10.1007/BF01455063 Zbl0663.34057
- [9] Fenske C.C., A direct topological definition of the Fuller index for local semiflows, Topol. Methods Nonlinear Anal., 2003, 21(2), 195–209 Zbl1035.37016
- [10] Franzosa R.D., An homology index generalizing Fuller’s index for periodic orbits, J. Differential Equations, 1990, 84(1), 1–14 http://dx.doi.org/10.1016/0022-0396(90)90124-8 Zbl0706.58055
- [11] Fuller F.B., An index of fixed point type for periodic orbits, Amer. J. Math., 1967, 89, 133–148 http://dx.doi.org/10.2307/2373103 Zbl0152.40204
- [12] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., 495, Kluwer, Dordrecht, 1999 http://dx.doi.org/10.1007/978-94-015-9195-9 Zbl0937.55001
- [13] Granas A., Dugundji J., Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003 http://dx.doi.org/10.1007/978-0-387-21593-8 Zbl1025.47002
- [14] Hatcher A., Algebraic Topology, Cambridge University Press, Cambridge, 2002
- [15] Kryszewski W., Homotopy Properties of Set-Valued Mappings, Nicolaus Copernicus University, Torun, 1997 Zbl1250.54022
- [16] Kryszewski W., Skiba R., A cohomological index of Fuller type for set-valued dynamical systems, Nonlinear Anal., 2012, 75(2), 684–716 http://dx.doi.org/10.1016/j.na.2011.09.002 Zbl1232.54023
- [17] Lang S., Introduction to Differentiable Manifolds, 2nd ed., Universitext, Springer, New York, 2002 Zbl1008.57001
- [18] Lee J.M., Introduction to Smooth Manifolds, Grad. Texts in Math., 218, Springer, New York, 2003
- [19] Massey W.S., Homology and Cohomology Theory, Monogr. Textbooks Pure Appl. Math., 46, Marcel Dekker, New York-Basel, 1978
- [20] Potter A.J.B., On a generalization of the Fuller index, In: Nonlinear Functional Analysis and its Applications, 2, Proc. Sympos. Pure Math., 45, American Mathematical Society, Providence, 1986, 283–286 http://dx.doi.org/10.1090/pspum/045.2/843615
- [21] Potter A.J.B., Approximation methods and the generalised Fuller index for semiflows in Banach spaces, Proc. Edinburgh Math. Soc., 1986, 29(3), 299–308 http://dx.doi.org/10.1017/S0013091500017740 Zbl0606.34043
- [22] Prasolov V.V., Elements of Homology Theory, Grad. Stud. Math., 81, American Mathematical Society, Providence, 2007 Zbl1120.55001
- [23] Spanier E.H., Algebraic Topology, McGraw-Hill, New York, 1966
- [24] Srzednicki R., Periodic orbits indices, Fund. Math., 1990, 135(3), 147–173 Zbl0715.55005
- [25] Srzednicki R., The fixed point homomorphism of parametrized mappings of ANR’s and the modified fuller index, Ruhr-Universität Bochum, Preprint No. 143/1990
- [26] Srzednicki R., Fixed point homomorphisms for parameterized maps, J. Fixed Point Theory Appl., 2013, 13(2), 489–518 http://dx.doi.org/10.1007/s11784-013-0131-6 Zbl1285.55002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.