Multivalued fractals in b-metric spaces
Monica Boriceanu; Marius Bota; Adrian Petruşel
Open Mathematics (2010)
- Volume: 8, Issue: 2, page 367-377
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMonica Boriceanu, Marius Bota, and Adrian Petruşel. "Multivalued fractals in b-metric spaces." Open Mathematics 8.2 (2010): 367-377. <http://eudml.org/doc/269747>.
@article{MonicaBoriceanu2010,
abstract = {Fractals and multivalued fractals play an important role in biology, quantum mechanics, computer graphics, dynamical systems, astronomy and astrophysics, geophysics, etc. Especially, there are important consequences of the iterated function (or multifunction) systems theory in several topics of applied sciences. It is known that examples of fractals and multivalued fractals are coming from fixed point theory for single-valued and multivalued operators, via the so-called fractal and multi-fractal operators. On the other hand, the most common setting for the study of fractals and multi-fractals is the case of operators on complete or compact metric spaces. The purpose of this paper is to extend the study of fractal operator theory for multivalued operators on complete b-metric spaces.},
author = {Monica Boriceanu, Marius Bota, Adrian Petruşel},
journal = {Open Mathematics},
keywords = {Multivalued operator; Fixed point; Strict fixed point; b-metric space; Self-similar set; Fractal operator; Multi-fractal operator; multivalued operator; fixed point; strict fixed point; -metric space; self-similar set; fractal operator; multi-fractal operator},
language = {eng},
number = {2},
pages = {367-377},
title = {Multivalued fractals in b-metric spaces},
url = {http://eudml.org/doc/269747},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Monica Boriceanu
AU - Marius Bota
AU - Adrian Petruşel
TI - Multivalued fractals in b-metric spaces
JO - Open Mathematics
PY - 2010
VL - 8
IS - 2
SP - 367
EP - 377
AB - Fractals and multivalued fractals play an important role in biology, quantum mechanics, computer graphics, dynamical systems, astronomy and astrophysics, geophysics, etc. Especially, there are important consequences of the iterated function (or multifunction) systems theory in several topics of applied sciences. It is known that examples of fractals and multivalued fractals are coming from fixed point theory for single-valued and multivalued operators, via the so-called fractal and multi-fractal operators. On the other hand, the most common setting for the study of fractals and multi-fractals is the case of operators on complete or compact metric spaces. The purpose of this paper is to extend the study of fractal operator theory for multivalued operators on complete b-metric spaces.
LA - eng
KW - Multivalued operator; Fixed point; Strict fixed point; b-metric space; Self-similar set; Fractal operator; Multi-fractal operator; multivalued operator; fixed point; strict fixed point; -metric space; self-similar set; fractal operator; multi-fractal operator
UR - http://eudml.org/doc/269747
ER -
References
top- [1] Andres J., Fišer J., Metric and topological multivalued fractals, Int. J. Bifurc. Chaos Appl. Sci. Engn., 2004, 14, 1277–1289 http://dx.doi.org/10.1142/S021812740400979X Zbl1057.28003
- [2] Andres J., Fišer J., Gabor G., Leśniak K., Multivalued fractals, Chaos Solitons & Fractals, 2005, 24, 665–700 http://dx.doi.org/10.1016/j.chaos.2004.09.029 Zbl1077.28002
- [3] Bakhtin I.A., The contraction mapping principle in almost metric spaces, Funct. Anal, Gos. Ped. Inst. Unianowsk, 1989, 30, 26–37 Zbl0748.47048
- [4] Barnsley M.F, Fractals Everywhere, Academic Press, Boston, 1988
- [5] Berinde V, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3–9
- [6] Berinde V, Sequences of operators and fixed points in quasimetric spaces, Studia Univ. Babeş-Bolyai, Math., 1996, 16,23–27 Zbl1005.54501
- [7] Blumenthal L.M., Theory and Applications of Distance Geometry, Oxford Univ. Press, Oxford, 1953
- [8] Boriceanu M., Petruşel A., Rus I.A., Fixed point theorems for some multivalued generalized contractions in b-metric spaces, Internat. J. Math. Statistics, 2010, 6, 65–76
- [9] Bourbaki N., Topologie générale, Herman, Paris, 1974
- [10] Browder FE., On the convergence of successive approximations for nonlinear functional equations, Indag. Math., 1968,30,27–35 Zbl0155.19401
- [11] Chifu C, Petruşel A., Multivalued fractals and generalized multivalued contractions, Chaos Solitons & Fractals, 2008,36,203–210 http://dx.doi.org/10.1016/j.chaos.2006.06.027 Zbl1131.28005
- [12] Covitz H., Nadler S.B. jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 1970, 8, 5–11 http://dx.doi.org/10.1007/BF02771543 Zbl0192.59802
- [13] Czerwik S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 1998, 46, 263–276 Zbl0920.47050
- [14] El Naschie M.S., Iterated function systems and the two-slit experiment of quantum mechanics, Chaos Solitons & Fractals, 1994, 4, 1965–1968 http://dx.doi.org/10.1016/0960-0779(94)90011-6
- [15] Fréchet M., Les espaces abstraits, Gauthier-Villars, Paris, 1928
- [16] Heinonen J., Lectures on Analysis on Metric Spaces, Springer Berlin, 2001
- [17] Hu S., Papageorgiou N.S., Handbook of Multivalued Analysis, Vol. I, II, Kluwer Acad. Publ., Dordrecht, 1997, 1999 Zbl0887.47001
- [18] Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30, 713–747 http://dx.doi.org/10.1512/iumj.1981.30.30055 Zbl0598.28011
- [19] Jachymski J., Matkowski J., Światkowski T., Nonlinear contractions on semimetric spaces, J. Appl. Anal., 1995, 1, 125–134 http://dx.doi.org/10.1515/JAA.1995.125 Zbl1295.54055
- [20] Kirk W.A., Sims B. (Eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001 Zbl0970.54001
- [21] Llorens-Fuster E., Petruşel A., Yao J.C., Iterated function systems and well-posedness, Chaos Solitons & Fractals, 2009, 41, 1561–1568 http://dx.doi.org/10.1016/j.chaos.2008.06.019 Zbl1198.52014
- [22] Meir A., Keeler E., A theorem on contraction mappings, J. Math. Anal. Appl., 1969, 28, 326–329 http://dx.doi.org/10.1016/0022-247X(69)90031-6
- [23] Nadler S.B. Jr., Multivalued contraction mappings, Pacific J. Math., 1969, 30, 475–488 Zbl0187.45002
- [24] Păcurar (Berinde) M., Iterative methods for fixed point approximation, Ph.D. thesis, Babeş-Bolyai University Cluj-Napoca, Romania, 2009
- [25] Păcurar (Berinde) M., A fixed point result for ϕ-contractions on b-metric spaces without the boundedness assumption, preprint
- [26] Petruşel A., Rus I.A., Well-posedness of the fixed point problem for multivalued operators, Applied Analysis and Differential Equations (Cârjă O., Vrabie I.I. (Eds.) World Scientific 2007, 295–306 Zbl1169.47037
- [27] Petruşel A., Rus I.A., Yao J.C., Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math., 2007, 11, 903–914 Zbl1149.54022
- [28] Rhoades B.E., Some theorems on weakly contractive maps, Nonlinear Anal., 2001, 47, 2683–2693 http://dx.doi.org/10.1016/S0362-546X(01)00388-1 Zbl1042.47521
- [29] Rus I.A., Petruşel A., Sîntămărian A., Data dependence of the fixed points set of some multivalued weakly Picard operators, Nonlinear Anal., 2003, 52, 1947–1959 http://dx.doi.org/10.1016/S0362-546X(02)00288-2
- [30] Rus I.A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001
- [31] Rus I.A., Picard operators and applications, Sci. Math. Japon., 2003, 58, 191–219
- [32] Rus I.A., Strict fixed point theory, Fixed Point Theory, 2003, 4, 177–183 Zbl1070.47519
- [33] Rus I.A., The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 2008, 9, 541–559 Zbl1172.54030
- [34] Singh S.L., Bhatnagar C., Mishra S.N., Stability of iterative procedures for multivalued maps in metric spaces, Demonstratio Math., 2005, 37, 905–916 Zbl1100.47056
- [35] Singh S.L., Prasad B., Kumar A., Fractals via iterated functions and multifunctions, Chaos Solitons & Fractals, 2009, 39, 1224–1231 http://dx.doi.org/10.1016/j.chaos.2007.06.014 Zbl1197.28004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.