Transitive conformal holonomy groups
Open Mathematics (2012)
- Volume: 10, Issue: 5, page 1710-1720
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJesse Alt. "Transitive conformal holonomy groups." Open Mathematics 10.5 (2012): 1710-1720. <http://eudml.org/doc/269749>.
@article{JesseAlt2012,
abstract = {For (M, [g]) a conformal manifold of signature (p, q) and dimension at least three, the conformal holonomy group Hol(M, [g]) ⊂ O(p + 1, q + 1) is an invariant induced by the canonical Cartan geometry of (M, [g]). We give a description of all possible connected conformal holonomy groups which act transitively on the Möbius sphere S p,q, the homogeneous model space for conformal structures of signature (p, q). The main part of this description is a list of all such groups which also act irreducibly on ℝp+1,q+1. For the rest, we show that they must be compact and act decomposably on ℝp+1,q+1, in particular, by known facts about conformal holonomy the conformal class [g] must contain a metric which is either Einstein (if p = 0 or q = 0) or locally isometric to a so-called special Einstein product.},
author = {Jesse Alt},
journal = {Open Mathematics},
keywords = {Conformal holonomy; Transitive group actions; conformal holonomy; transitive group action},
language = {eng},
number = {5},
pages = {1710-1720},
title = {Transitive conformal holonomy groups},
url = {http://eudml.org/doc/269749},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Jesse Alt
TI - Transitive conformal holonomy groups
JO - Open Mathematics
PY - 2012
VL - 10
IS - 5
SP - 1710
EP - 1720
AB - For (M, [g]) a conformal manifold of signature (p, q) and dimension at least three, the conformal holonomy group Hol(M, [g]) ⊂ O(p + 1, q + 1) is an invariant induced by the canonical Cartan geometry of (M, [g]). We give a description of all possible connected conformal holonomy groups which act transitively on the Möbius sphere S p,q, the homogeneous model space for conformal structures of signature (p, q). The main part of this description is a list of all such groups which also act irreducibly on ℝp+1,q+1. For the rest, we show that they must be compact and act decomposably on ℝp+1,q+1, in particular, by known facts about conformal holonomy the conformal class [g] must contain a metric which is either Einstein (if p = 0 or q = 0) or locally isometric to a so-called special Einstein product.
LA - eng
KW - Conformal holonomy; Transitive group actions; conformal holonomy; transitive group action
UR - http://eudml.org/doc/269749
ER -
References
top- [1] Alt J., Fefferman Constructions in Conformal Holonomy, PhD thesis, Humboldt University, Berlin, 2008
- [2] Alt J., On quaternionic contact Fefferman spaces, Differential Geom. Appl., 2010, 28(4), 376–394 http://dx.doi.org/10.1016/j.difgeo.2010.04.001 Zbl1196.53031
- [3] Alt J., Notes of “Transitive conformal holonomy groups”, available at http://sites.google.com/site/jmaltmath/ Zbl1278.53045
- [4] Armstrong S., Definite signature conformal holonomy: a complete classification, J. Geom. Phys., 2007, 57(10), 2024–2048 http://dx.doi.org/10.1016/j.geomphys.2007.05.001 Zbl05201910
- [5] Armstrong S., Leitner F., Decomposable conformal holonomy in Riemannian signature, Math. Nachr. (in press), DOI: 10.1002/mana.201000055 Zbl1246.53064
- [6] Bailey T.N., Eastwood M.G., Gover A.R., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math., 1994, 24(4), 1191–1217 http://dx.doi.org/10.1216/rmjm/1181072333 Zbl0828.53012
- [7] Bryant R.L., Conformal geometry and 3-plane fields on 6-manifolds, Developments of Cartan Geometry and Related Mathematical Problems, Kyoto, October 24–27, 2005, RIMS Symposium Proceedings, 1502, Kyoto University, Kyoto, 2006, 1–15
- [8] Čap A., Gover A.R., CR-tractors and the Fefferman space, Indiana Univ. Math. J., 2008, 57(5), 2519–2570 http://dx.doi.org/10.1512/iumj.2008.57.3359 Zbl1162.32019
- [9] Čap A., Gover A.R., A holonomy characterisation of Fefferman spaces, Ann. Glob. Anal. Geom., 2010, 38(4), 399–412 http://dx.doi.org/10.1007/s10455-010-9220-6 Zbl1298.53041
- [10] Čap A., Gover A.R., Hammerl M., Holonomy reductions of Cartan geometries and curved orbit decompositions, preprint available at http://arxiv.org/abs/1103.4497 Zbl1298.53042
- [11] Čap A., Slovák J., Parabolic Geometries. I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 Zbl1183.53002
- [12] Di Scala A.J., Leistner T., Connected subgroups of SO(2; n) acting irreducibly on R2;n , Israel J. Math., 2011, 182, 103–121 http://dx.doi.org/10.1007/s11856-011-0025-5 Zbl1222.22008
- [13] Di Scala A.J., Leistner T., Neukirchner T., Geometric applications of irreducible representations of Lie groups, In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry, IRMA Lect. Math. Theor. Phys., 16, European Mathematical Society, Zürich, 2010, 629–651 http://dx.doi.org/10.4171/079-1/18 Zbl1205.53053
- [14] Di Scala A.J., Olmos C., The geometry of homogeneous submanifolds of hyperbolic space, Math. Z., 2001, 237(1), 199–209 http://dx.doi.org/10.1007/PL00004860 Zbl0997.53051
- [15] Fefferman C.L., Monge-Ampère equations, the Bergman kernel and geometry of pseudoconvex domains, Ann. of Math., 1976, 103(2), 395–416 http://dx.doi.org/10.2307/1970945 Zbl0322.32012
- [16] Graham C.R., Willse T., Parallel tractor extension and ambient metrics of holonomy split G 2, preprint available at http://arxiv.org/abs/1109.3504
- [17] Hammerl M., Sagerschnig K., Conformal structures associated to generic rank 2 distributions on 5-manifolds - characterization and Killing-field decomposition, SIGMA Symmetry Integrability Geom. Methods Appl., 2009, 5, #081 Zbl1191.53016
- [18] Hammerl M., Sagerschnig K., The twistor spinors of generic 2- and 3-distributions, Ann. Global Anal. Geom., 2011, 39(4), 403–425 http://dx.doi.org/10.1007/s10455-010-9240-2 Zbl1229.53058
- [19] Iwahori N., On real irreducible representations of Lie algebras, Nagoya Math. J., 1959, 14, 59–83 Zbl0101.02401
- [20] Kamerich B.N.P., Transitive Transformation Groups on Products of Two Spheres, Krips Repro, Meppel, 1977
- [21] Knapp A.W., Lie Groups Beyond an Introduction, Progr. Math., 140, Birkhäuser, Boston, 1996 Zbl0862.22006
- [22] Kramer L., Homogeneous Spaces, Tits Buildings, and Isoparametric Hypersurfaces, Mem. Amer. Math. Soc., 158(752), American Mathematical Society, Providence, 2002 Zbl1027.57002
- [23] Leistner T., Conformal holonomy of C-spaces, Ricci-flat and Lorentzian manifolds, Differential Geom. Appl., 2006, 24(5), 458–478 http://dx.doi.org/10.1016/j.difgeo.2006.04.008 Zbl1109.53052
- [24] Leitner F., A remark on unitary conformal holonomy, In: Symmetries and Overdetermined Systems of Partial Differential Equations, Minneapolis, July 17-August 4, 2006, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 445–460 http://dx.doi.org/10.1007/978-0-387-73831-4_23
- [25] Leitner F., Normal conformal Killing forms, preprint available at http://arxiv.org/abs/math/0406316
- [26] Montgomery D., Simply connected homogeneous spaces, Proc. Amer. Math Soc., 1950, 1(4), 467–469 http://dx.doi.org/10.1090/S0002-9939-1950-0037311-6 Zbl0041.36309
- [27] Nurowski P., Differential equations and conformal structures, J. Geom. Phys., 2005, 55(1), 19–49 http://dx.doi.org/10.1016/j.geomphys.2004.11.006 Zbl1082.53024
- [28] Onishchik A.L., Topology of Transitive Transformation Groups, Johann Ambrosius Barth, Leipzig, 1994 Zbl0796.57001
- [29] Onishchik A.L., Vinberg E.B., Lie Groups and Algebraic Groups, Springer Ser. Soviet Math., Springer, Berlin-Heidelberg, 1990 Zbl0722.22004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.