Boundary regularity of flows under perfect slip boundary conditions

Petr Kaplický; Jakub Tichý

Open Mathematics (2013)

  • Volume: 11, Issue: 7, page 1243-1263
  • ISSN: 2391-5455

Abstract

top
We investigate boundary regularity of solutions of generalized Stokes equations. The problem is complemented with perfect slip boundary conditions and we assume that the nonlinear elliptic operator satisfies non-standard ϕ-growth conditions. We show the existence of second derivatives of velocity and their optimal regularity.

How to cite

top

Petr Kaplický, and Jakub Tichý. "Boundary regularity of flows under perfect slip boundary conditions." Open Mathematics 11.7 (2013): 1243-1263. <http://eudml.org/doc/269751>.

@article{PetrKaplický2013,
abstract = {We investigate boundary regularity of solutions of generalized Stokes equations. The problem is complemented with perfect slip boundary conditions and we assume that the nonlinear elliptic operator satisfies non-standard ϕ-growth conditions. We show the existence of second derivatives of velocity and their optimal regularity.},
author = {Petr Kaplický, Jakub Tichý},
journal = {Open Mathematics},
keywords = {Boundary regularity; Perfect Slip Boundary Condition; Generalized Stokes System; Orlicz-Sobolev spaces; generalized Stokes system},
language = {eng},
number = {7},
pages = {1243-1263},
title = {Boundary regularity of flows under perfect slip boundary conditions},
url = {http://eudml.org/doc/269751},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Petr Kaplický
AU - Jakub Tichý
TI - Boundary regularity of flows under perfect slip boundary conditions
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1243
EP - 1263
AB - We investigate boundary regularity of solutions of generalized Stokes equations. The problem is complemented with perfect slip boundary conditions and we assume that the nonlinear elliptic operator satisfies non-standard ϕ-growth conditions. We show the existence of second derivatives of velocity and their optimal regularity.
LA - eng
KW - Boundary regularity; Perfect Slip Boundary Condition; Generalized Stokes System; Orlicz-Sobolev spaces; generalized Stokes system
UR - http://eudml.org/doc/269751
ER -

References

top
  1. [1] Amrouche C., Girault V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 1994, 44(119)(1), 109–140 Zbl0823.35140
  2. [2] Beirão da Veiga H., On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions, Comm. Pure Appl. Math., 2005, 58(4), 552–577 http://dx.doi.org/10.1002/cpa.20036[Crossref] Zbl1075.35045
  3. [3] Beirão da Veiga H., Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 2009, 11(2), 233–257 http://dx.doi.org/10.1007/s00021-008-0257-2[Crossref][WoS] Zbl1213.76047
  4. [4] Beirão da Veiga H., Navier-Stokes equations with shear-thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 2009, 11(2), 258–273 http://dx.doi.org/10.1007/s00021-008-0258-1[Crossref][WoS] Zbl1190.35174
  5. [5] Beirão da Veiga H., On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem, J. Eur. Math. Soc. (JEMS), 2009, 11(1), 127–167 http://dx.doi.org/10.4171/JEMS/144[Crossref] 
  6. [6] Beirão da Veiga H., Kaplický P., Růžička M., Boundary regularity of shear thickening flows, J. Math. Fluid Mech., 2011, 13(3), 387–404 http://dx.doi.org/10.1007/s00021-010-0025-y[Crossref] Zbl1270.35360
  7. [7] Desvillettes L., Villani C., On a variant of Korn’s inequality arising in statistical mechanics, ESIAM Control Optim. Calc. Var., 2002, 8, 603–619 http://dx.doi.org/10.1051/cocv:2002036[Crossref] Zbl1092.82032
  8. [8] Diening L., Ettwein F., Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math., 2008, 20(3), 523–556 http://dx.doi.org/10.1515/FORUM.2008.027[WoS][Crossref] Zbl1188.35069
  9. [9] Diening L., Kaplický P., L q theory for a generalized Stokes system, Manuscripta Math. (in press), DOI: 10.1007/s00229-012-0574-x [Crossref][WoS] Zbl1263.35175
  10. [10] Diening L., Růžička M., Interpolation operators in Orlicz-Sobolev spaces, Numer. Math., 2007, 107(1), 107–129 http://dx.doi.org/10.1007/s00211-007-0079-9[Crossref][WoS] Zbl1131.46023
  11. [11] Diening L., Růžička M., Schumacher K., A decomposition technique for John domains, Ann. Acad. Sci. Fenn. Math., 2010, 35(1), 87–114 http://dx.doi.org/10.5186/aasfm.2010.3506[Crossref] 
  12. [12] Ebmeyer C., Regularity in Sobolev spaces of steady flows of fluids with shear-dependent viscosity, Math. Methods Appl. Sci., 2006, 29(14), 1687–1707 http://dx.doi.org/10.1002/mma.748[Crossref] Zbl1124.35053
  13. [13] Frehse J., Málek J., Steinhauer M., An existence result for fluids with shear dependent viscosity - steady flows, Nonlinear Anal., 1997, 30(5), 3041–3049 http://dx.doi.org/10.1016/S0362-546X(97)00392-1[Crossref] Zbl0902.35089
  14. [14] Frehse J., Málek J., Steinhauer M., On existence result for fluids with shear dependent viscosity - unsteady flows, In: Partial Differential Equations, Praha, August 10–16, 1998, Chapman & Hall/CRC Res. Notes Math., 406, Chapman & Hall/CRC, Boca Raton, 2000, 121–129 Zbl0935.35026
  15. [15] Galdi G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I, Springer Tracts Nat. Philos., 38, Springer, New York, 1994 Zbl0949.35004
  16. [16] Hlaváček I., Nečas J., On inequalities of Korn’s type, Arch. Rational Mech. Anal., 1970, 36(4), 305–311 http://dx.doi.org/10.1007/BF00249518[Crossref] Zbl0193.39001
  17. [17] Hlaváček I., Nečas J., On inequalities of Korn’s type II, Arch. Rational Mech. Anal., 1970, 36(4), 312–334 http://dx.doi.org/10.1007/BF00249519[Crossref] Zbl0193.39002
  18. [18] Kaplický P., Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions, Z. Anal. Anwendungen, 2005, 24(3), 467–486 http://dx.doi.org/10.4171/ZAA/1251[Crossref] Zbl1094.35100
  19. [19] Kaplický P., Regularity of flow of anisotropic fluid, J. Math. Fluid Mech., 2008, 10(1), 71–88 http://dx.doi.org/10.1007/s00021-006-0217-7[Crossref] Zbl1162.76304
  20. [20] Kaplický P., Málek J., Stará J., On global existence of smooth two-dimensional steady flows for a class of non-Newtonian fluids under various boundary conditions, In: Applied Nonlinear Analysis, New York, Kluwer/Plenum, 1999, 213–229 Zbl0953.35120
  21. [21] Kaplický P., Málek J., Stará J., C 1,α-solutions to a class of nonlinear fluids in two dimensions - stationary Dirichlet problem, J. Math. Sci. (New York), 2002, 109(5), 1867–1893 http://dx.doi.org/10.1023/A:1014440207817[Crossref] 
  22. [22] Kaplický P., Málek J., Stará J., Global-in-time Hölder continuity of the velocity gradients for fluids with shear-dependent viscosities, NoDEA Nonlinear Differential Equations Appl., 2002, 9(2), 175–195 http://dx.doi.org/10.1007/s00030-002-8123-z[Crossref] Zbl0991.35066
  23. [23] Krasnosel’skiĭ M.A., Rutickiĭ Ja.B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961 
  24. [24] Ladyzhenskaya O.A., New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems, Proc. Steklov Inst. Math., 1967, 102, 95–118 
  25. [25] Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comput., 13, Chapman & Hall, London, 1996 Zbl0851.35002
  26. [26] Málek J., Nečas J., Růžička M., On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p ≥ 2, Adv. Differential Equations, 2001, 6(3), 257–302 Zbl1021.35085
  27. [27] Málek J., Pražák D., Steinhauer M., On the existence and regularity of solutions for degenerate power-law fluids, Differential Integral Equations, 2006, 19(4), 449–462 Zbl1200.76020
  28. [28] Peetre J., A new approach in interpolation spaces, Studia Math., 1970, 34, 23–42 Zbl0188.43602
  29. [29] Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, New York, 1991 Zbl0724.46032
  30. [30] Troianiello G.M., Elliptic Differential Equations and Obstacle Problems, Univ. Ser. Math., Plenum Press, New York, 1987 Zbl0655.35002
  31. [31] Wolf J., Interior C 1,α-regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimensions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 2007, 10(2), 317–340 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.