Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions

Cholmin Sin; Sin-Il Ri

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 4, page 567-585
  • ISSN: 0862-7959

Abstract

top
We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided p ( x ) > 2 n / ( n + 2 ) . To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.

How to cite

top

Sin, Cholmin, and Ri, Sin-Il. "Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions." Mathematica Bohemica 147.4 (2022): 567-585. <http://eudml.org/doc/298785>.

@article{Sin2022,
abstract = {We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided $p(x)>2n/(n+2)$. To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.},
author = {Sin, Cholmin, Ri, Sin-Il},
journal = {Mathematica Bohemica},
keywords = {existence of weak solutions; electrorheological fluid; Lipschitz truncation; variable exponent},
language = {eng},
number = {4},
pages = {567-585},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions},
url = {http://eudml.org/doc/298785},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Sin, Cholmin
AU - Ri, Sin-Il
TI - Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 4
SP - 567
EP - 585
AB - We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided $p(x)>2n/(n+2)$. To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.
LA - eng
KW - existence of weak solutions; electrorheological fluid; Lipschitz truncation; variable exponent
UR - http://eudml.org/doc/298785
ER -

References

top
  1. Abbatiello, A., Crispo, F., Maremonti, P., 10.1016/j.na.2017.12.014, Nonlinear Anal., Theory Methods Appl., Ser. A 170 (2018), 47-69. (2018) Zbl1469.35172MR3765555DOI10.1016/j.na.2017.12.014
  2. Bauer, S., Pauly, D., 10.1007/s11565-016-0247-x, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 62 (2016), 173-188. (2016) Zbl1364.46028MR3570353DOI10.1007/s11565-016-0247-x
  3. Veiga, H. Beirão da, Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Adv. Differ. Equ. 9 (2004), 1079-1114. (2004) Zbl1103.35084MR2098066
  4. Veiga, H. Beirão da, 10.1002/cpa.20036, Commun. Pure Appl. Math. 58 (2005), 552-577. (2005) Zbl1075.35045MR2119869DOI10.1002/cpa.20036
  5. Bögelein, V., Duzaar, F., Habermann, J., Scheven, C., 10.1515/acv.2011.009, Adv. Calc. Var. 5 (2012), 1-57. (2012) Zbl1238.35095MR2879566DOI10.1515/acv.2011.009
  6. Breit, D., Diening, L., Fuchs, M., 10.1016/j.jde.2012.05.010, J. Differ. Equations 253 (2012), 1910-1942. (2012) Zbl1245.35080MR2943947DOI10.1016/j.jde.2012.05.010
  7. Breit, D., Diening, L., Schwarzacher, S., 10.1142/S0218202513500437, Math. Models Methods Appl. Sci. 23 (2013), 2671-2700. (2013) Zbl1309.76024MR3119635DOI10.1142/S0218202513500437
  8. Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A., 10.1137/110830289, SIAM J. Math. Anal. 44 (2012), 2756-2801. (2012) Zbl1256.35074MR3023393DOI10.1137/110830289
  9. Bulíček, M., Málek, J., Rajagopal, K. R., 10.1512/iumj.2007.56.2997, Indiana Univ. Math. J. 56 (2007), 51-85. (2007) Zbl1129.35055MR2305930DOI10.1512/iumj.2007.56.2997
  10. Chen, P., Xiao, Y., Zhang, H., 10.1002/mma.4443, Math. Methods Appl. Sci. 40 (2017), 5925-5932. (2017) Zbl1390.35226MR3713338DOI10.1002/mma.4443
  11. Crispo, F., 10.1007/s10440-014-9897-9, Acta Appl. Math. 132 (2014), 237-250. (2014) Zbl1295.76004MR3255040DOI10.1007/s10440-014-9897-9
  12. Desvillettes, L., Villani, C., 10.1051/cocv:2002036, ESAIM, Control Optim. Calc. Var. 8 (2002), 603-619. (2002) Zbl1092.82032MR1932965DOI10.1051/cocv:2002036
  13. Desvillettes, L., Villani, C., 10.1007/s00222-004-0389-9, Invent. Math. 159 (2005), 245-316. (2005) Zbl1162.82316MR2116276DOI10.1007/s00222-004-0389-9
  14. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  15. Diening, L., Málek, J., Steinhauer, M., 10.1051/cocv:2007049, ESAIM, Control Optim. Calc. Var. 14 (2008), 211-232. (2008) Zbl1143.35037MR2394508DOI10.1051/cocv:2007049
  16. Diening, L., Růžička, M., 10.3934/dcdss.2010.3.255, Discrete Contin. Dyn. Syst., Ser. S 3 (2010), 255-268. (2010) Zbl1193.35150MR2610563DOI10.3934/dcdss.2010.3.255
  17. Diening, L., Růžička, M., Schumacher, K., 10.5186/aasfm.2010.3506, Ann. Acad. Sci. Fenn., Math. 35 (2010), 87-114. (2010) Zbl1194.26022MR2643399DOI10.5186/aasfm.2010.3506
  18. Diening, L., Schwarzacher, S., Stroffolini, B., Verde, A., 10.1007/s00526-017-1209-6, Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 120, 27 pages. (2017) Zbl1377.35144MR3672391DOI10.1007/s00526-017-1209-6
  19. Ebmeyer, C., 10.1002/mma.748, Math. Methods Appl. Sci. 29 (2006), 1687-1707. (2006) Zbl1124.35053MR2248563DOI10.1002/mma.748
  20. Fan, X., 10.1016/j.jmaa.2007.08.003, J. Math. Anal. Appl. 339 (2008), 1395-1412. (2008) Zbl1136.46025MR2377096DOI10.1016/j.jmaa.2007.08.003
  21. Frehse, J., Málek, J., Steinhauer, M., 10.1016/S0362-546X(97)00392-1, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3041-3049. (1997) Zbl0902.35089MR1602949DOI10.1016/S0362-546X(97)00392-1
  22. Frehse, J., Málek, J., Steinhauer, M., 10.1137/S0036141002410988, SIAM J. Math. Anal. 34 (2003), 1064-1083. (2003) Zbl1050.35080MR2001659DOI10.1137/S0036141002410988
  23. Galdi, G. P., 10.1007/978-0-387-09620-9, Springer Monographs in Mathematics. Springer, New York (2011). (2011) Zbl1245.35002MR2808162DOI10.1007/978-0-387-09620-9
  24. Jiang, R., Kauranen, A., 10.1007/s00526-017-1196-7, Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 109, 18 pages. (2017) Zbl1373.35015MR3669778DOI10.1007/s00526-017-1196-7
  25. Kaplický, P., Tichý, J., 10.2478/s11533-013-0232-x, Cent. Eur. J. Math. 11 (2013), 1243-1263. (2013) Zbl1278.35040MR3047056DOI10.2478/s11533-013-0232-x
  26. Kučera, P., Neustupa, J., 10.1088/1361-6544/aa6166, Nonlinearity 30 (2017), 1564-1583. (2017) Zbl1367.35109MR3636311DOI10.1088/1361-6544/aa6166
  27. Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969). (1969) Zbl0184.52603MR0254401
  28. Li, Y., Li, K., 10.1016/j.jmaa.2011.04.020, J. Math. Anal. Appl. 381 (2011), 1-9. (2011) Zbl1221.35282MR2796187DOI10.1016/j.jmaa.2011.04.020
  29. Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
  30. Mácha, V., Tichý, J., 10.1007/s00021-014-0190-5, J. Math. Fluid Mech. 16 (2014), 823-845. (2014) Zbl1309.35089MR3267551DOI10.1007/s00021-014-0190-5
  31. Malý, J., Ziemer, W. P., 10.1090/surv/051, Mathematical Surveys and Monographs 51. American Mathematical Society, Providence (1997). (1997) Zbl0882.35001MR1461542DOI10.1090/surv/051
  32. Neustupa, J., Penel, P., 10.1155/2018/4617020, Adv. Math. Phys. 2018 (2018), Article ID 4617020, 7 pages. (2018) Zbl1406.35236MR3773415DOI10.1155/2018/4617020
  33. Rădulescu, D. V., Repovš, D. D., 10.1201/b18601, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). (2015) Zbl1343.35003MR3379920DOI10.1201/b18601
  34. Růžička, M., 10.1016/S0362-546X(97)00391-X, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3029-3039. (1997) Zbl0906.35076MR1602945DOI10.1016/S0362-546X(97)00391-X
  35. Růžička, M., 10.1007/BFb0104029, Lecture Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
  36. Sin, C., 10.1016/j.jmaa.2016.07.019, J. Math. Anal. Appl. 445 (2017), 1025-1046. (2017) Zbl1352.35124MR3543809DOI10.1016/j.jmaa.2016.07.019
  37. Sin, C., 10.1016/j.na.2017.06.014, Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. (2017) Zbl1375.35400MR3695973DOI10.1016/j.na.2017.06.014
  38. Sin, C., 10.1016/j.jmaa.2017.10.081, J. Math. Anal. Appl. 461 (2018), 752-776. (2018) Zbl1387.35082MR3759566DOI10.1016/j.jmaa.2017.10.081
  39. Sin, C., 10.1016/j.na.2018.08.009, Nonlinear Anal., Theory Methods Appl., Ser. A 179 (2019), 309-343. (2019) Zbl1404.35079MR3886635DOI10.1016/j.na.2018.08.009
  40. Solonnikov, V. A., Scadilov, V. E., On a boundary value problem for a stationary system of Navier-Stokes equations, Proc. Steklov Inst. Math. 125 (1973), 186-199 translation from Trudy Mat. Inst. Steklov 125 1973 196-210. (1973) Zbl0313.35063MR0172014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.