Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions
Mathematica Bohemica (2022)
- Volume: 147, Issue: 4, page 567-585
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSin, Cholmin, and Ri, Sin-Il. "Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions." Mathematica Bohemica 147.4 (2022): 567-585. <http://eudml.org/doc/298785>.
@article{Sin2022,
abstract = {We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided $p(x)>2n/(n+2)$. To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.},
author = {Sin, Cholmin, Ri, Sin-Il},
journal = {Mathematica Bohemica},
keywords = {existence of weak solutions; electrorheological fluid; Lipschitz truncation; variable exponent},
language = {eng},
number = {4},
pages = {567-585},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions},
url = {http://eudml.org/doc/298785},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Sin, Cholmin
AU - Ri, Sin-Il
TI - Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 4
SP - 567
EP - 585
AB - We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided $p(x)>2n/(n+2)$. To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.
LA - eng
KW - existence of weak solutions; electrorheological fluid; Lipschitz truncation; variable exponent
UR - http://eudml.org/doc/298785
ER -
References
top- Abbatiello, A., Crispo, F., Maremonti, P., 10.1016/j.na.2017.12.014, Nonlinear Anal., Theory Methods Appl., Ser. A 170 (2018), 47-69. (2018) Zbl1469.35172MR3765555DOI10.1016/j.na.2017.12.014
- Bauer, S., Pauly, D., 10.1007/s11565-016-0247-x, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 62 (2016), 173-188. (2016) Zbl1364.46028MR3570353DOI10.1007/s11565-016-0247-x
- Veiga, H. Beirão da, Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Adv. Differ. Equ. 9 (2004), 1079-1114. (2004) Zbl1103.35084MR2098066
- Veiga, H. Beirão da, 10.1002/cpa.20036, Commun. Pure Appl. Math. 58 (2005), 552-577. (2005) Zbl1075.35045MR2119869DOI10.1002/cpa.20036
- Bögelein, V., Duzaar, F., Habermann, J., Scheven, C., 10.1515/acv.2011.009, Adv. Calc. Var. 5 (2012), 1-57. (2012) Zbl1238.35095MR2879566DOI10.1515/acv.2011.009
- Breit, D., Diening, L., Fuchs, M., 10.1016/j.jde.2012.05.010, J. Differ. Equations 253 (2012), 1910-1942. (2012) Zbl1245.35080MR2943947DOI10.1016/j.jde.2012.05.010
- Breit, D., Diening, L., Schwarzacher, S., 10.1142/S0218202513500437, Math. Models Methods Appl. Sci. 23 (2013), 2671-2700. (2013) Zbl1309.76024MR3119635DOI10.1142/S0218202513500437
- Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A., 10.1137/110830289, SIAM J. Math. Anal. 44 (2012), 2756-2801. (2012) Zbl1256.35074MR3023393DOI10.1137/110830289
- Bulíček, M., Málek, J., Rajagopal, K. R., 10.1512/iumj.2007.56.2997, Indiana Univ. Math. J. 56 (2007), 51-85. (2007) Zbl1129.35055MR2305930DOI10.1512/iumj.2007.56.2997
- Chen, P., Xiao, Y., Zhang, H., 10.1002/mma.4443, Math. Methods Appl. Sci. 40 (2017), 5925-5932. (2017) Zbl1390.35226MR3713338DOI10.1002/mma.4443
- Crispo, F., 10.1007/s10440-014-9897-9, Acta Appl. Math. 132 (2014), 237-250. (2014) Zbl1295.76004MR3255040DOI10.1007/s10440-014-9897-9
- Desvillettes, L., Villani, C., 10.1051/cocv:2002036, ESAIM, Control Optim. Calc. Var. 8 (2002), 603-619. (2002) Zbl1092.82032MR1932965DOI10.1051/cocv:2002036
- Desvillettes, L., Villani, C., 10.1007/s00222-004-0389-9, Invent. Math. 159 (2005), 245-316. (2005) Zbl1162.82316MR2116276DOI10.1007/s00222-004-0389-9
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
- Diening, L., Málek, J., Steinhauer, M., 10.1051/cocv:2007049, ESAIM, Control Optim. Calc. Var. 14 (2008), 211-232. (2008) Zbl1143.35037MR2394508DOI10.1051/cocv:2007049
- Diening, L., Růžička, M., 10.3934/dcdss.2010.3.255, Discrete Contin. Dyn. Syst., Ser. S 3 (2010), 255-268. (2010) Zbl1193.35150MR2610563DOI10.3934/dcdss.2010.3.255
- Diening, L., Růžička, M., Schumacher, K., 10.5186/aasfm.2010.3506, Ann. Acad. Sci. Fenn., Math. 35 (2010), 87-114. (2010) Zbl1194.26022MR2643399DOI10.5186/aasfm.2010.3506
- Diening, L., Schwarzacher, S., Stroffolini, B., Verde, A., 10.1007/s00526-017-1209-6, Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 120, 27 pages. (2017) Zbl1377.35144MR3672391DOI10.1007/s00526-017-1209-6
- Ebmeyer, C., 10.1002/mma.748, Math. Methods Appl. Sci. 29 (2006), 1687-1707. (2006) Zbl1124.35053MR2248563DOI10.1002/mma.748
- Fan, X., 10.1016/j.jmaa.2007.08.003, J. Math. Anal. Appl. 339 (2008), 1395-1412. (2008) Zbl1136.46025MR2377096DOI10.1016/j.jmaa.2007.08.003
- Frehse, J., Málek, J., Steinhauer, M., 10.1016/S0362-546X(97)00392-1, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3041-3049. (1997) Zbl0902.35089MR1602949DOI10.1016/S0362-546X(97)00392-1
- Frehse, J., Málek, J., Steinhauer, M., 10.1137/S0036141002410988, SIAM J. Math. Anal. 34 (2003), 1064-1083. (2003) Zbl1050.35080MR2001659DOI10.1137/S0036141002410988
- Galdi, G. P., 10.1007/978-0-387-09620-9, Springer Monographs in Mathematics. Springer, New York (2011). (2011) Zbl1245.35002MR2808162DOI10.1007/978-0-387-09620-9
- Jiang, R., Kauranen, A., 10.1007/s00526-017-1196-7, Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 109, 18 pages. (2017) Zbl1373.35015MR3669778DOI10.1007/s00526-017-1196-7
- Kaplický, P., Tichý, J., 10.2478/s11533-013-0232-x, Cent. Eur. J. Math. 11 (2013), 1243-1263. (2013) Zbl1278.35040MR3047056DOI10.2478/s11533-013-0232-x
- Kučera, P., Neustupa, J., 10.1088/1361-6544/aa6166, Nonlinearity 30 (2017), 1564-1583. (2017) Zbl1367.35109MR3636311DOI10.1088/1361-6544/aa6166
- Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969). (1969) Zbl0184.52603MR0254401
- Li, Y., Li, K., 10.1016/j.jmaa.2011.04.020, J. Math. Anal. Appl. 381 (2011), 1-9. (2011) Zbl1221.35282MR2796187DOI10.1016/j.jmaa.2011.04.020
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Mácha, V., Tichý, J., 10.1007/s00021-014-0190-5, J. Math. Fluid Mech. 16 (2014), 823-845. (2014) Zbl1309.35089MR3267551DOI10.1007/s00021-014-0190-5
- Malý, J., Ziemer, W. P., 10.1090/surv/051, Mathematical Surveys and Monographs 51. American Mathematical Society, Providence (1997). (1997) Zbl0882.35001MR1461542DOI10.1090/surv/051
- Neustupa, J., Penel, P., 10.1155/2018/4617020, Adv. Math. Phys. 2018 (2018), Article ID 4617020, 7 pages. (2018) Zbl1406.35236MR3773415DOI10.1155/2018/4617020
- Rădulescu, D. V., Repovš, D. D., 10.1201/b18601, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). (2015) Zbl1343.35003MR3379920DOI10.1201/b18601
- Růžička, M., 10.1016/S0362-546X(97)00391-X, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3029-3039. (1997) Zbl0906.35076MR1602945DOI10.1016/S0362-546X(97)00391-X
- Růžička, M., 10.1007/BFb0104029, Lecture Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
- Sin, C., 10.1016/j.jmaa.2016.07.019, J. Math. Anal. Appl. 445 (2017), 1025-1046. (2017) Zbl1352.35124MR3543809DOI10.1016/j.jmaa.2016.07.019
- Sin, C., 10.1016/j.na.2017.06.014, Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. (2017) Zbl1375.35400MR3695973DOI10.1016/j.na.2017.06.014
- Sin, C., 10.1016/j.jmaa.2017.10.081, J. Math. Anal. Appl. 461 (2018), 752-776. (2018) Zbl1387.35082MR3759566DOI10.1016/j.jmaa.2017.10.081
- Sin, C., 10.1016/j.na.2018.08.009, Nonlinear Anal., Theory Methods Appl., Ser. A 179 (2019), 309-343. (2019) Zbl1404.35079MR3886635DOI10.1016/j.na.2018.08.009
- Solonnikov, V. A., Scadilov, V. E., On a boundary value problem for a stationary system of Navier-Stokes equations, Proc. Steklov Inst. Math. 125 (1973), 186-199 translation from Trudy Mat. Inst. Steklov 125 1973 196-210. (1973) Zbl0313.35063MR0172014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.