On the graph labellings arising from phylogenetics
Weronika Buczyńska; Jarosław Buczyński; Kaie Kubjas; Mateusz Michałek
Open Mathematics (2013)
- Volume: 11, Issue: 9, page 1577-1592
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topWeronika Buczyńska, et al. "On the graph labellings arising from phylogenetics." Open Mathematics 11.9 (2013): 1577-1592. <http://eudml.org/doc/269753>.
@article{WeronikaBuczyńska2013,
abstract = {We study semigroups of labellings associated to a graph. These generalise the Jukes-Cantor model and phylogenetic toric varieties defined in [Buczynska W., Phylogenetic toric varieties on graphs, J. Algebraic Combin., 2012, 35(3), 421–460]. Our main theorem bounds the degree of the generators of the semigroup by g + 1 when the graph has first Betti number g. Also, we provide a series of examples where the bound is sharp.},
author = {Weronika Buczyńska, Jarosław Buczyński, Kaie Kubjas, Mateusz Michałek},
journal = {Open Mathematics},
keywords = {Graph labellings; Phylogenetic semigroup; Semigroup generators; Lattice cone; Hilbert basis; Conformal block algebras; Cavender-Farris-Neyman model; 2-state Jukes-Cantor model; graph labellings; phylogenetic semigroup; semigroup generators; lattice cone; conformal block algebras},
language = {eng},
number = {9},
pages = {1577-1592},
title = {On the graph labellings arising from phylogenetics},
url = {http://eudml.org/doc/269753},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Weronika Buczyńska
AU - Jarosław Buczyński
AU - Kaie Kubjas
AU - Mateusz Michałek
TI - On the graph labellings arising from phylogenetics
JO - Open Mathematics
PY - 2013
VL - 11
IS - 9
SP - 1577
EP - 1592
AB - We study semigroups of labellings associated to a graph. These generalise the Jukes-Cantor model and phylogenetic toric varieties defined in [Buczynska W., Phylogenetic toric varieties on graphs, J. Algebraic Combin., 2012, 35(3), 421–460]. Our main theorem bounds the degree of the generators of the semigroup by g + 1 when the graph has first Betti number g. Also, we provide a series of examples where the bound is sharp.
LA - eng
KW - Graph labellings; Phylogenetic semigroup; Semigroup generators; Lattice cone; Hilbert basis; Conformal block algebras; Cavender-Farris-Neyman model; 2-state Jukes-Cantor model; graph labellings; phylogenetic semigroup; semigroup generators; lattice cone; conformal block algebras
UR - http://eudml.org/doc/269753
ER -
References
top- [1] Bosma W., Cannon J., Playoust C., The Magma algebra system. I. The user language, In: Computational Algebra and Number Theory, London, August 23–27, 1993, J. Symbolic Comput., 1997, 24(3–4), 235–265 Zbl0898.68039
- [2] Brown G., Buczyński J., Kasprzyk A., Chapter: Convex polytopes and polyhedra, The Magma Handbook, University of Sydney, available at http://magma.maths.usyd.edu.au/
- [3] Buczyńska W., Phylogenetic toric varieties on graphs, J. Algebraic Combin., 2012, 35(3), 421–460 http://dx.doi.org/10.1007/s10801-011-0308-2
- [4] Buczyńska W., Wiśniewski J.A., On geometry of binary symmetric models of phylogenetic trees, J. Eur. Math. Soc. (JEMS), 2007, 9(3), 609–635 http://dx.doi.org/10.4171/JEMS/90 Zbl1147.14027
- [5] Donten-Bury M., Michałek M., Phylogenetic invariants for group-based models, J. Algebr. Stat., 2012, 3(1), 44–63
- [6] Faltings G., A proof for the Verlinde formula, J. Algebraic Geom., 1994, 3(2), 347–374 Zbl0809.14009
- [7] Jeffrey L.C., Weitsman J., Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula, Comm. Math. Phys., 1992, 150(3), 593–630 http://dx.doi.org/10.1007/BF02096964 Zbl0787.53068
- [8] Kubjas K., Hilbert polynomial of the Kimura 3-parameter model, J. Algebr. Stat., 2012, 3(1), 64–69
- [9] Manon C., Coordinate rings for the moduli stack of SL2(ℂ) quasi-parabolic principal bundles on a curve and toric fiber products, J. Algebra, 2012, 365, 163–183 http://dx.doi.org/10.1016/j.jalgebra.2012.05.007
- [10] Manon C., The algebra of conformal blocks, preprint available at http://arxiv.org/abs/0910.0577v3 Zbl1327.14055
- [11] Michałek M. Geometry of phylogenetic group-based models, J. Algebra, 2011, 339, 339–356 http://dx.doi.org/10.1016/j.jalgebra.2011.05.016 Zbl1251.14040
- [12] Michałek M., Toric geometry of the 3-Kimura model for any tree, Adv. Geom. (in press), preprint available at http://arxiv.org/abs/1102.4733v4
- [13] Neyman J., Molecular studies in evolution: a source of novel statistical problems, In: Statistical Decision Theory and Related Topics, Academic Press, New York, 1971, 1–27
- [14] Pachter L., Sturmfels B., Statistics, In: Algebraic Statistics for Computational Biology, Cambridge University Press, New York, 2005, 3–42 http://dx.doi.org/10.1017/CBO9780511610684.004 Zbl1108.62118
- [15] Sturmfels B., Sullivant S., Toric ideals of phylogenetic invariants, Journal of Computational Biology, 2005, 12(2), 204–228 http://dx.doi.org/10.1089/cmb.2005.12.204
- [16] Sturmfels B., Velasco M., Blow-ups of ℙn−3 at n points and spinor varieties, J. Commut. Algebra, 2010, 2(2), 223–244 http://dx.doi.org/10.1216/JCA-2010-2-2-223 Zbl1237.14025
- [17] Sturmfels B., Xu Z., Sagbi basis and Cox-Nagata rings, J. Eur. Math. Soc. (JEMS), 2010, 12(2), 429–459 http://dx.doi.org/10.4171/JEMS/204
- [18] Verlinde E., Fusion rules and modular transformations in 2D conformal field theory, Nuclear Phys. B, 1988, 300(3), 360–376 http://dx.doi.org/10.1016/0550-3213(88)90603-7 Zbl1180.81120
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.