Bayoumi quasi-differential is not different from Fréchet-differential
Fernando Albiac; José Ansorena
Open Mathematics (2012)
- Volume: 10, Issue: 3, page 1071-1075
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Albiac F., The role of local convexity in Lipschitz maps, J. Convex. Anal., 2011, 18(4), 983–997 Zbl1236.46002
- [2] Aoki T., Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo, 1942, 18, 588–594 http://dx.doi.org/10.3792/pia/1195573733
- [3] Bayoumi A., Mean value theorem for complex locally bounded spaces, Comm. Appl. Nonlinear Anal., 1997, 4(4), 91–103 Zbl0910.46032
- [4] Bayoumi A., Foundations of Complex Analysis in Non Locally Convex Spaces, North-Holland Math. Stud., 193, Elsevier, Amsterdam, 2003
- [5] Bayoumi A., Bayoumi quasi-differential is different from Fréchet-differential, Cent. Eur. J. Math., 2006, 4(4), 585–593 http://dx.doi.org/10.2478/s11533-006-0028-3 Zbl1107.58002
- [6] Benyamini Y., Lindenstrauss J., Geometric nonlinear functional analysis. I, Amer. Math. Soc. Colloq. Publ., 48, American Mathematical Society, Providence, 2000 Zbl0946.46002
- [7] Enflo P., Uniform structures and square roots in topological groups. I, Israel J. Math., 1970, 8, 230–252 http://dx.doi.org/10.1007/BF02771560 Zbl0214.28402
- [8] Kalton N.J., Curves with zero derivatives in F-spaces, Glasgow Math. J., 1981, 22(1), 19–29 http://dx.doi.org/10.1017/S0017089500004432 Zbl0454.46001
- [9] Kalton N., Quasi-Banach spaces, In: Handbook of the Geometry of Banach Spaces, 2, North-Holland, Amsterdam, 2003, 1099–1130 http://dx.doi.org/10.1016/S1874-5849(03)80032-3 Zbl1059.46004
- [10] Kalton N.J., Peck N.T., Roberts J.W., An F-space Sampler, London Math. Soc. Lecture Note Ser., 89, Cambridge University Press, 1984
- [11] Rolewicz S., On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III, 1957, 5, 471–473 Zbl0079.12602
- [12] Rolewicz S., Remarks on functions with derivative zero, Wiadom. Mat., 1959, 3, 127–128 (in Polish)
- [13] Rolewicz S., Metric linear spaces, Math. Appl. (East European Ser.), 20, Reidel, Dordrecht, PWN, Warsaw, 1985