The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Bayoumi quasi-differential is not different from Fréchet-differential”

The basic sequence problem

N. Kalton (1995)

Studia Mathematica

Similarity:

We construct a quasi-Banach space X which contains no basic sequence.

Quasi-linear maps

D. J. Grubb (2008)

Fundamenta Mathematicae

Similarity:

A quasi-linear map from a continuous function space C(X) is one which is linear on each singly generated subalgebra. We show that the collection of quasi-linear functionals has a Banach space pre-dual with a natural order. We then investigate quasi-linear maps between two continuous function spaces, classifying them in terms of generalized image transformations.

Bayoumi Quasi-Differential is different from Fréchet-Differential

Aboubakr Bayoumi (2006)

Open Mathematics

Similarity:

We prove that the Quasi Differential of Bayoumi of maps between locally bounded F-spaces may not be Fréchet-Differential and vice versa. So a new concept has been discovered with rich applications (see [1–6]). Our F-spaces here are not necessarily locally convex

Note on quasi-bounded sets.

Bosch, Carlos, Kučera, Jan, McKennon, Kelly (1991)

International Journal of Mathematics and Mathematical Sciences

Similarity:

Linear maps preserving quasi-commutativity

Heydar Radjavi, Peter Šemrl (2008)

Studia Mathematica

Similarity:

Let X and Y be Banach spaces and ℬ(X) and ℬ(Y) the algebras of all bounded linear operators on X and Y, respectively. We say that A,B ∈ ℬ(X) quasi-commute if there exists a nonzero scalar ω such that AB = ωBA. We characterize bijective linear maps ϕ : ℬ(X) → ℬ(Y) preserving quasi-commutativity. In fact, such a characterization can be proved for much more general algebras. In the finite-dimensional case the same result can be obtained without the bijectivity assumption.