Uniformly bounded set-valued Nemytskij operators acting between generalized Hölder function spaces

Janusz Matkowski; Małgorzata Wróbel

Open Mathematics (2012)

  • Volume: 10, Issue: 2, page 609-618
  • ISSN: 2391-5455

Abstract

top
We show that the generator of any uniformly bounded set-valued Nemytskij composition operator acting between generalized Hölder function metric spaces, with nonempty, bounded, closed, and convex values, is an affine function.

How to cite

top

Janusz Matkowski, and Małgorzata Wróbel. "Uniformly bounded set-valued Nemytskij operators acting between generalized Hölder function spaces." Open Mathematics 10.2 (2012): 609-618. <http://eudml.org/doc/269761>.

@article{JanuszMatkowski2012,
abstract = {We show that the generator of any uniformly bounded set-valued Nemytskij composition operator acting between generalized Hölder function metric spaces, with nonempty, bounded, closed, and convex values, is an affine function.},
author = {Janusz Matkowski, Małgorzata Wróbel},
journal = {Open Mathematics},
keywords = {Nemytskij composition operator; Uniformly bounded operator; Set-valued function; Generalized Hölder function metric space; uniformly bounded operator; set-valued function; generalized Hölder function metric space},
language = {eng},
number = {2},
pages = {609-618},
title = {Uniformly bounded set-valued Nemytskij operators acting between generalized Hölder function spaces},
url = {http://eudml.org/doc/269761},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Janusz Matkowski
AU - Małgorzata Wróbel
TI - Uniformly bounded set-valued Nemytskij operators acting between generalized Hölder function spaces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 2
SP - 609
EP - 618
AB - We show that the generator of any uniformly bounded set-valued Nemytskij composition operator acting between generalized Hölder function metric spaces, with nonempty, bounded, closed, and convex values, is an affine function.
LA - eng
KW - Nemytskij composition operator; Uniformly bounded operator; Set-valued function; Generalized Hölder function metric space; uniformly bounded operator; set-valued function; generalized Hölder function metric space
UR - http://eudml.org/doc/269761
ER -

References

top
  1. [1] Appell J., Zabrejko P.P., Nonlinear Superposition Operators, Cambridge Tracts in Math., 95, Cambridge University Press, Cambridge, 1990 Zbl0701.47041
  2. [2] Azócar A., Guerrero J.A., Matkowski J., Merentes N., Uniformly continuous set-valued composition operators in the spaces of functions of bounded variation in the sense of Wiener, Opuscula Math., 2010, 30(1), 53–60 Zbl1216.47090
  3. [3] Chistyakov V.V., Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight, J. Appl. Anal., 2000, 6(2), 173–186 http://dx.doi.org/10.1515/JAA.2000.173 Zbl0997.47051
  4. [4] Guerrero J.A., Leiva H., Matkowski J., Merentes N., Uniformly continuous composition operators in the space of bounded φ-variation functions, Nonlinear Anal., 2010, 72(6), 3119–3123 http://dx.doi.org/10.1016/j.na.2009.11.051 Zbl1225.47078
  5. [5] Ludew J.J., On Lipschitzian operators of substitution generated by set-valued functions, Opuscula Math., 2007, 27(1), 13–24 Zbl1160.47047
  6. [6] Mainka E., On uniformly continuous Nemytskij operators generated by set-valued functions, Aequationes Math., 2010, 79(3), 293–306 http://dx.doi.org/10.1007/s00010-010-0023-4 Zbl1227.47031
  7. [7] Matkowski J., Functional equations and Nemytskii operators, Funkcial. Ekvac., 1982, 25(2), 127–132 Zbl0504.39008
  8. [8] Matkowski J., Lipschitzian composition operators in some function spaces, Nonlinear Anal., 1997, 30(2), 719–726 http://dx.doi.org/10.1016/S0362-546X(96)00287-8 Zbl0894.47052
  9. [9] Matkowski J., Remarks on Lipschitzian mappings and some fixed point theorems, Banach J. Math. Anal., 2007, 2(1), 237–244 Zbl1146.47034
  10. [10] Matkowski J., Uniformly continuous superposition operators in the spaces of differentiable functions and absolutely continuous functions, In: Inequalities and Applications, Noszvaj, September 9–15, 2007, Internat. Ser. Numer. Math., 157, Birkhäuser, Basel, 2009, 155–166 http://dx.doi.org/10.1007/978-3-7643-8773-0_15 
  11. [11] Matkowski J., Uniformly continuous superposition operators in the Banach space of Hölder functions, J. Math. Anal. Appl., 2009, 359(1), 56–61 http://dx.doi.org/10.1016/j.jmaa.2009.05.020 Zbl1173.47043
  12. [12] Matkowski J., Uniformly continuous superposition operators in the space of bounded variation functions, Math. Nachr., 2010, 283(7), 1060–1064 Zbl1235.47052
  13. [13] Matkowski J., Uniformly bounded composition operators between general Lipschitz function normed spaces, Topol. Methods Nonlinear Anal., 2011, 38(2), 395–406 Zbl1272.47070
  14. [14] Matkowski J., Miś J., On a characterization of Lipschitzian operators of substitution in the space BV〈a, b〉, Math. Nachr., 1984, 117, 155–159 http://dx.doi.org/10.1002/mana.3211170111 Zbl0566.47033
  15. [15] Matkowski J., Wróbel M., Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces, Discuss. Math. Differ. Incl. Control Optim., 2011, 31(2), 183–198 Zbl1264.47070
  16. [16] Smajdor A., Smajdor W., Jensen equation and Nemytskiı operator for set-valued functions, Rad. Math., 1989, 5(2), 311–320 Zbl0696.47057
  17. [17] Smajdor W., Note on Jensen and Pexider functional equations, Demonstratio Math., 1999, 32(2), 363–376 Zbl0938.39026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.